

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime N/A Some samples have been subcontracted No

Qualifier Codes/Comments

Code	Description
------	-------------

112 Where sampling date has not been provided, Eurofins | Environment Testing is not able to determine whether analysis has been performed within recommended holding times.

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles N01 (Purge & Trap analysis)

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid. N02

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to N07

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix Q08

The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report. Q15

Authorised By

Savini Suduweli Analytical Services Manager Emily Rosenbera Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC) Scott Beddoes Senior Analyst-Inorganic (VIC)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Atma Environmental 56 William St Abbotsford VIC 3067

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Glenn Berry

 Report
 732366-W

 Project name
 ELWOOD

 Project ID
 1865B

 Received Date
 Jul 15, 2020

Client Sample ID			DECON140720
Sample Matrix			Water
Eurofins Sample No.			M20-JI28273
Date Sampled			Not Provided ^{I12}
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM Fra	actions		
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1
Total Recoverable Hydrocarbons - 2013 NEPM Fra	actions		
Naphthalene ^{N02}	0.01	mg/L	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)	1	%	85
p-Terphenyl-d14 (surr.)	1	%	96

Date Reported: Jul 21, 2020

Client Sample ID				DECON140720
Sample Matrix				Water
Eurofins Sample No.				M20-JI28273
Date Sampled				Not Provided ^{I12}
Test/Reference	L	OR.	Unit	
Heavy Metals				
Arsenic (filtered)	0	.001	mg/L	< 0.001
Barium (filtered)	(.02	mg/L	< 0.02
Beryllium (filtered)	0	.001	mg/L	< 0.001
Boron (filtered)	(.05	mg/L	< 0.05
Cadmium (filtered)	0.	0002	mg/L	< 0.0002
Chromium (filtered)	0	.001	mg/L	< 0.001
Cobalt (filtered)	0	.001	mg/L	< 0.001
Copper (filtered)	0	.001	mg/L	< 0.001
Lead (filtered)	0	.001	mg/L	< 0.001
Manganese (filtered)	0	.005	mg/L	< 0.005
Mercury (filtered)	0.	0001	mg/L	< 0.0001
Molybdenum (filtered)	0	.005	mg/L	< 0.005
Nickel (filtered)	0	.001	mg/L	< 0.001
Selenium (filtered)	0	.001	mg/L	< 0.001
Silver (filtered)	0	.005	mg/L	< 0.005
Tin (filtered)	0	.005	mg/L	< 0.005
Zinc (filtered)	0	.005	mg/L	< 0.005

Page 2 of 17

Report Number: 732366-W

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Melbourne	Extracted Jul 17, 2020	Holding Time 7 Days
- Method: LTM-ORG-2010 TRH C6-C40 Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Jul 17, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40 Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Jul 17, 2020	
 - Method: LTM-ORG-2010 TRH C6-C40 NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding New Polycyclic Aromatic Hydrocarbons 	Methyl Mercury/PBDE Melbourne	Jul 17. 2020	7 Davs
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water Vic EPA Metals: Metals M17 filtered	Melbourne	Jul 17, 2020	28 Days

- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Jul 15, 2020 2:00 PM

Jul 22, 2020

Glenn Berry

5 Day

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

ABN - 50 005 085 521

Address:

Atma Environmental

56 William St

Abbotsford

VIC 3067

Project Name: Project ID:

ELWOOD 1865B

Order No.:

Report #: Phone:

732366 9429 6955

Fax: 9429 5911

Sydney

Eurofins Analytical Services Manager: Savini Suduweli

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271							Polycyclic Aromatic Hydrocarbons	VIC EPA Metals : Metals M17	Vic EPA Metals : Metals M17 filtered	Aggressivity Soil Set	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217												
Bris	bane Laborator	y - NATA Site#	20794												
Pert	h Laboratory - N	NATA Site # 237	'36												
Exte	rnal Laboratory	<u>'</u>													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	BH1/0.1	Not Provided		Soil	M20-JI28230		Х	Х	Х			Х			Х
2	BH2/0.1	Not Provided		Soil	M20-JI28231			Х	Х			Х			Х
3	BH3/0.1	Not Provided		Soil	M20-JI28232							Х		Х	
4	BH4/0.1	Not Provided		Soil	M20-JI28233			Х	Х			Х			Х
5	BH5/0.1	Not Provided		Soil	M20-JI28234			Х	Х			Х			Х
6	BH6/0.1	Not Provided		Soil	M20-JI28235							Х		Х	
7	BH7/0.1	Not Provided		Soil	M20-JI28236			Х	Х			х			Х
8	BH8/0.1	Not Provided		Soil	M20-JI28237			Х	Х			Х			Х
9	BH9/0.1	Not Provided		Soil	M20-JI28238			Х	Х			Х			Х
10	BH10/0.1	Not Provided		Soil	M20-JI28239			Х	Х			Х	Х		Х

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Received:

Priority:

Contact Name:

Due:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Atma Environmental

56 William St

Abbotsford

VIC 3067

Project Name: Project ID:

ELWOOD 1865B

Order No.:

Phone:

Report #:

732366 9429 6955

9429 5911 Fax:

Sydney

Eurofins Analytical Services Manager: Savini Suduweli

New Zealand

Jul 15, 2020 2:00 PM

Jul 22, 2020

Glenn Berry

	Sample Detail lelbourne Laboratory - NATA Site # 1254 & 14271 ydney Laboratory - NATA Site # 18217							Polycyclic Aromatic Hydrocarbons	VIC EPA Metals : Metals M17	Vic EPA Metals : Metals M17 filtered	Aggressivity Soil Set	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
Melk	ourne Laborato		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			
Syd	ydney Laboratory - NATA Site # 18217														
Bris	bane Laborator	y - NATA Site #	20794												Ш
Pert	h Laboratory - N	NATA Site # 237	36		_										
11	BH11/0.1	Not Provided		Soil	M20-JI28240			Х	Х			Х	Х		Х
12	BH12/0.1	Not Provided		Soil	M20-JI28241						Χ	Х			
13	BH13/0.1	Not Provided		Soil	M20-JI28242		Х	Х	Х			Х			Х
14	BH14/0.1	Not Provided		Soil	M20-JI28243			Х	Х			Х			Х
15	BH15/0.1	Not Provided		Soil	M20-JI28244			Х	Х			Х			Х
16	BH16/0.1	Not Provided		Soil	M20-JI28245			Х	Х			Х			Х
17	BH17/0.1	Not Provided		Soil	M20-JI28246		Х	Х	Х			Х			Х
18	BH18/0.1	Not Provided		Soil	M20-JI28247							Х		Х	
19	BH19/0.1	Not Provided		Soil	M20-JI28248							Х		Х	
20	BH20/0.1	Not Provided		Soil	M20-JI28249			Х	Х			Х			Х
21	BH21/0.1	Not Provided		Soil	M20-JI28250			Х	Х			Х			Х
22	BH22/0.1	Not Provided		Soil	M20-JI28251			Х	Х			Х			Х
23	BH23/0.1	Not Provided		Soil	M20-JI28252		Х	Х	Х			Х	Х		Х

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 NATA # 1261 Site # 23736

Phone: +61 8 9251 9600

Received:

Priority:

Contact Name:

Due:

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

Atma Environmental

56 William St Abbotsford

VIC 3067

Project Name: Project ID:

ELWOOD 1865B

Order No.:

Report #: Phone:

732366 9429 6955

9429 5911 Fax:

Eurofins Analytical Services Manager: Savini Suduweli

New Zealand

35 O'Rorke Road

Jul 22, 2020

Glenn Berry

Jul 15, 2020 2:00 PM

Auckland

IANZ # 1327

	Sample Detail Sample Detail							Polycyclic Aromatic Hydrocarbons	VIC EPA Metals : Metals M17	Vic EPA Metals : Metals M17 filtered	Aggressivity Soil Set	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
Melk	ourne Laborat	ory - NATA Site	# 1254 & 142	71		Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217												\square
Bris	bane Laborator	y - NATA Site#	20794												
Pert	h Laboratory - I	NATA Site # 237	36	1											\longrightarrow
24	BH24/0.1	Not Provided		Soil	M20-JI28253			Χ	Х			Х			Х
25	BH25/0.1	Not Provided		Soil	M20-JI28254		Х	Х	Х			Х			Х
26	BH26/0.1	Not Provided		Soil	M20-JI28255			Х	Х			Х			Х
27	BH27/0.1	Not Provided		Soil	M20-JI28256			Х	Х		Х	Х			Х
28	BH28/0.1	Not Provided		Soil	M20-JI28257			Х	Х			Х			Х
29	BH29/0.1	Not Provided		Soil	M20-JI28258			Х	Х			Х			Х
30	BH30/0.1	Not Provided		Soil	M20-JI28259		Х	Х	Х			Х			Х
31	BH31/0.1	Not Provided		Soil	M20-JI28260			Х	Х			Х			Х
32	BH32/0.1	Not Provided		Soil	M20-JI28261		Х	Х	Х		Х	Х			Х
33	BH33/0.1	Not Provided		Soil	M20-JI28262			Х	Х			Х			Х
34	BH34/0.1	Not Provided		Soil	M20-JI28263			Х	Х			Х	Х		Х
35	BH35/0.1	Not Provided		Soil	M20-JI28264			Х	Х			Х			Х
36	BH36/0.1	Not Provided	M20-JI28265			Χ	Х			Х	Х		Х		

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Atma Environmental

56 William St

Abbotsford VIC 3067

Project Name: Project ID:

ELWOOD 1865B

Order No.:

Report #: Phone:

732366 9429 6955 9429 5911

Sydney

Fax:

Priority: **Contact Name:**

Due:

Received:

Jul 15, 2020 2:00 PM Jul 22, 2020

5 Day Glenn Berry

Eurofins Analytical Services Manager: Savini Suduweli

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271 Sydney Laboratory - NATA Site # 18217							Polycyclic Aromatic Hydrocarbons	VIC EPA Metals : Metals M17	Vic EPA Metals : Metals M17 filtered	Aggressivity Soil Set	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217												
Bris	bane Laboratory	y - NATA Site #	20794												
Pert	h Laboratory - N	IATA Site # 237	36		_										
37	BH37/0.1	Not Provided		Soil	M20-JI28266			Х	Х			Х			Х
38	T1/0.1	Not Provided		Woodchips	M20-JI28267									Х	
39	T2/0.1	Not Provided		Soil	M20-JI28268							Х	Х	Х	
40	DUP-140720A	Not Provided		Soil	M20-JI28269				Х			Х			
41	DUP-140720B	Not Provided		Soil	M20-JI28270			Х	Х			Х			
42	DUP-140720C	Not Provided		Soil	M20-JI28271			Х	Х			Х			
43	DUP-140720D	Not Provided		Soil	M20-JI28272			Х				Х			Х
44	DECON14072 0	Not Provided		Water	M20-JI28273			Х		х					Х
45	BH1/0.5	Not Provided		Soil	M20-JI28274	Х									
46	BH2/0.5	Not Provided		Soil	M20-JI28275	Х									
47	BH2/1.0	Not Provided		Soil	M20-JI28276	Х									
48	BH3/0.5	Not Provided		Soil	M20-JI28277	X									

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 NATA # 1261

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 Site # 23736

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

Atma Environmental

56 William St

Abbotsford VIC 3067

Project Name:

Project ID:

ELWOOD 1865B

Order No.:

Report #: Phone:

732366 9429 6955

9429 5911 Fax:

Sydney

Received: Jul 15, 2020 2:00 PM

New Zealand

35 O'Rorke Road

Penrose, Auckland 1061

Phone: +64 9 526 45 51

Auckland

IANZ # 1327

Due: Jul 22, 2020 Priority: 5 Day **Contact Name:** Glenn Berry

Eurofins Analytical Services Manager: Savini Suduweli

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271 Sydney Laboratory - NATA Site # 18217							Polycyclic Aromatic Hydrocarbons	VIC EPA Metals : Metals M17	Vic EPA Metals : Metals M17 filtered	Aggressivity Soil Set	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
Mell	oourne Laborat	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory														
Bris	bane Laborator	ry - NATA Site#	20794												\square
Perf	h Laboratory -	NATA Site # 237	36												\square
49	BH3/1.0	Not Provided		Soil	M20-JI28278	Х									
50	BH4/0.5	Not Provided		Soil	M20-JI28279	Х									
51	BH5/1.0	Not Provided		Soil	M20-JI28280	Х									
52	BH5/1.5	Not Provided		Soil	M20-JI28281	Х									
53	BH6/0.5	Not Provided		Soil	M20-JI28282	Х									
54	BH7/0.5	Not Provided		Soil	M20-JI28283	Х									
55	BH7/1.0	Not Provided		Soil	M20-JI28284	Х									
56	BH8/0.5	Not Provided		Soil	M20-JI28285	Х									
57	BH9/0.5	Not Provided		Soil	M20-JI28286	Х								igsquare	
58	BH10/0.5	Not Provided		Soil	M20-JI28287	Х									\square
59	BH11/0.5	Not Provided		Soil	M20-JI28288	Х									
60	BH13/0.5	Not Provided		Soil	M20-JI28289	Х									\square
61	BH13/1.0	Not Provided		Soil	M20-JI28290	Х									

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Received:

Priority:

Contact Name:

Due:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327

IANZ # 1290

Company Name:

Atma Environmental

56 William St

Abbotsford VIC 3067

Project Name: Project ID:

ELWOOD 1865B

Order No.:

Report #: Phone:

732366 9429 6955

9429 5911 Fax:

Sydney

Eurofins Analytical Services Manager: Savini Suduweli

New Zealand

Jul 15, 2020 2:00 PM

Jul 22, 2020

Glenn Berry

		Sai	mple Detail			HOLD	pH (units)(1:5 soil:CaCl2 extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	VIC EPA Metals : Metals M17	Vic EPA Metals : Metals M17 filtered	Aggressivity Soil Set	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
Mell	ourne Laborat	ory - NATA Site	# 1254 & 14271			Х	Х	Χ	Х	Х	Х	Х	Χ	Х	Х
		- NATA Site # 1													
		ry - NATA Site #													
		NATA Site # 237			T										$\perp \perp \mid$
62	BH13/1.5	Not Provided		oil	M20-JI28291	Х									
63	BH14/0.5	Not Provided	s	oil	M20-JI28292	Х									
64	BH14/1.0	Not Provided		oil	M20-JI28293	Х									
65	BH14/1.5	Not Provided	S	oil	M20-JI28294	Х									
66	BH15/0.5	Not Provided	S	oil	M20-JI28295	Х									
67	BH15/1.0	Not Provided	S	oil	M20-JI28296	Х									
68	BH17/0.5	Not Provided	S	oil	M20-JI28297	Х									
69	BH17/1.0	Not Provided	S	oil	M20-JI28298	Х									
70	BH18/0.5	Not Provided	s	oil	M20-JI28299	Х									
71	BH18/1.0	Not Provided	s	oil	M20-JI28300	Х									
72	BH19/0.5	Not Provided	s	oil	M20-JI28301	Х									
73	BH19/1.0	Not Provided	s	oil	M20-JI28302	Х									
74	BH21/0.5	Not Provided	s	oil	M20-JI28303	Х									

ABN - 50 005 085 521

Address:

Company Name:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Atma Environmental

56 William St Abbotsford

VIC 3067

Project Name: Project ID:

ELWOOD 1865B

Order No.: Report #:

Phone:

Sydney

732366 9429 6955 9429 5911

Fax:

Received: Jul 15, 2020 2:00 PM

Due: Jul 22, 2020 Priority: 5 Day **Contact Name:** Glenn Berry

Eurofins Analytical Services Manager: Savini Suduweli

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271 Sydney Laboratory - NATA Site # 18217							Polycyclic Aromatic Hydrocarbons	VIC EPA Metals : Metals M17	Vic EPA Metals : Metals M17 filtered	Aggressivity Soil Set	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
Mell	oourne Laborat	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory														
Bris	bane Laborator	ry - NATA Site #	20794												
Perf	h Laboratory -	NATA Site # 237	36	,											
75	BH21/1.0	Not Provided		Soil	M20-JI28304	Х									
76	BH22/0.5	Not Provided		Soil	M20-JI28305	Х							<u> </u>		
77	BH23/0.5	Not Provided		Soil	M20-JI28307	Х							<u> </u>		
78	BH23/1.0	Not Provided		Soil	M20-JI28308	Х							<u> </u>		
79	BH24/0.5	Not Provided		Soil	M20-JI28309	Х							<u> </u>		
80	BH25/0.5	Not Provided		Soil	M20-JI28310	Х									
81	BH25/1.0	Not Provided		Soil	M20-JI28311	Х									
82	BH26/0.5	Not Provided		Soil	M20-JI28312	Х							ــــــ		
83	BH27/0.5	Not Provided		Soil	M20-JI28313	Х							ــــــ		
84	BH28/0.5	Not Provided		Soil	M20-JI28314	Х							ــــــ		
85	BH29/0.5	Not Provided		Soil	M20-JI28315	Х									
86	BH29/1.0	Not Provided		Soil	M20-JI28316	Х									
87	BH30/0.5	Not Provided		Soil	M20-JI28317	Х							<u> </u>		

ABN - 50 005 085 521

web : www.eurofins.com.au e.mail : EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Received:

Priority:

Contact Name:

Due:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Atma Environmental

56 William St

Abbotsford VIC 3067

Project Name: Project ID:

Address:

ELWOOD 1865B

Order No.:

Report #: Phone:

732366 9429 6955

9429 5911 Fax:

Sydney

16 Mars Road

Eurofins Analytical Services Manager: Savini Suduweli

New Zealand

Jul 15, 2020 2:00 PM

Jul 22, 2020

Glenn Berry

		Sa	mple Detail			HOLD	pH (units)(1:5 soil:CaCl2 extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	VIC EPA Metals : Metals M17	Vic EPA Metals : Metals M17 filtered	Aggressivity Soil Set	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271		Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory														
	bane Laborator														
Pert	h Laboratory - N	ATA Site # 237	36												
88	BH31/0.5	Not Provided		Soil	M20-JI28318	Х									\square
89	BH31/1.0	Not Provided		Soil	M20-JI28319	Х									
90	BH32/0.5	Not Provided		Soil	M20-JI28320	Х									Ш
91	BH32/1.0	Not Provided		Soil	M20-JI28321	Х									
92	BH32/1.5	Not Provided		Soil	M20-JI28322	Х									
93	BH33/0.5	Not Provided		Soil	M20-JI28323	Х									
94	BH34/0.5	Not Provided		Soil	M20-JI28324	Х									
95	BH35/0.5	Not Provided		Soil	M20-JI28325	Х									
96	BH36/0.5	Not Provided		Soil	M20-JI28326	Х									
97	BH37/0.5	Not Provided		Soil	M20-JI28327	Х									
98	T1/0.5	Not Provided		Soil	M20-JI28328	Х									
99	T2/0.5	Not Provided		Soil	M20-JI28330	Х									
100	DUP-140720E	Not Provided		Soil	M20-JI28331	Х									

ABN - 50 005 085 521

Address:

web : www.eurofins.com.au e.mail : EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Received:

Priority:

Contact Name:

Due:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Atma Environmental

56 William St

Abbotsford VIC 3067

Project Name: Project ID:

ELWOOD 1865B

Order No.:

Report #:

Phone:

732366 9429 6955

9429 5911 Fax:

Eurofins Analytical Services Manager: Savini Suduweli

New Zealand

Jul 15, 2020 2:00 PM

Jul 22, 2020

Glenn Berry

		Sa	mple Detail			HOLD	pH (units)(1:5 soil:CaCl2 extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	VIC EPA Metals : Metals M17	Vic EPA Metals : Metals M17 filtered	Aggressivity Soil Set	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Sydr	ney Laboratory	- NATA Site # 1	8217												
Bris	oane Laborator	y - NATA Site #	20794												
Pert	Laboratory - N	ATA Site # 237	'36		<u>, </u>										
101	FIELD-140720	Not Provided		Water	M20-JI28332	Х									
102	TRIP-140720	Not Provided		Water	M20-JI28333	Х									
103	BH5/0.5	Not Provided		Soil	M20-JI28426	Х									
104	BH15/1.5	Not Provided		Soil	M20-JI28437	Х									
105	T1/1.0	Not Provided		Soil	M20-JI28462	Х									
Test	Counts					61	7	36	35	1	3	42	6	6	34

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/L	< 0.02		0.02	Pass	
TRH C10-C14	mg/L	< 0.05		0.05	Pass	
TRH C15-C28	mg/L	< 0.1		0.1	Pass	
TRH C29-C36	mg/L	< 0.1		0.1	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/L	< 0.01		0.01	Pass	
TRH C6-C10	mg/L	< 0.02		0.02	Pass	
TRH >C10-C16	mg/L	< 0.05		0.05	Pass	
TRH >C16-C34	mg/L	< 0.1		0.1	Pass	
TRH >C34-C40	mg/L	< 0.1		0.1	Pass	
Method Blank						
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/L	< 0.001		0.001	Pass	
Acenaphthylene	mg/L	< 0.001		0.001	Pass	
Anthracene	mg/L	< 0.001		0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001		0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001		0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001		0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001		0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001		0.001	Pass	
Chrysene	mg/L	< 0.001		0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001		0.001	Pass	
Fluoranthene	mg/L	< 0.001		0.001	Pass	
Fluorene	mg/L	< 0.001		0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001		0.001	Pass	
Naphthalene	mg/L	< 0.001		0.001	Pass	
Phenanthrene	mg/L	< 0.001		0.001	Pass	
Pyrene	mg/L	< 0.001		0.001	Pass	
Method Blank						
Heavy Metals						
Arsenic (filtered)	mg/L	< 0.001		0.001	Pass	
Barium (filtered)	mg/L	< 0.02		0.02	Pass	
Beryllium (filtered)	mg/L	< 0.001		0.001	Pass	
Boron (filtered)	mg/L	< 0.05		0.05	Pass	
Cadmium (filtered)	mg/L	< 0.0002		0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001		0.001	Pass	
Cobalt (filtered)	mg/L	< 0.001		0.001	Pass	
Copper (filtered)	mg/L	< 0.001		0.001	Pass	
Lead (filtered)	mg/L	< 0.001		0.001	Pass	
Manganese (filtered)	mg/L	< 0.005		0.005	Pass	
Mercury (filtered)	mg/L	< 0.0001		0.0001	Pass	
Molybdenum (filtered)	mg/L	< 0.005		0.005	Pass	
Nickel (filtered)	mg/L	< 0.001		0.001	Pass	
Selenium (filtered)	mg/L	< 0.001		0.001	Pass	
Silver (filtered)	mg/L	< 0.005		0.005	Pass	
Tin (filtered)	mg/L	< 0.005		0.005	Pass	
Zinc (filtered)	mg/L	< 0.005		0.005	Pass	
LCS - % Recovery			, ,			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
TRH C6-C9			%	97	70-130	Pass	
TRH C10-C14			%	105	70-130	Pass	
LCS - % Recovery							
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions					
Naphthalene			%	93	70-130	Pass	
TRH C6-C10			%	95	70-130	Pass	
TRH >C10-C16			%	100	70-130	Pass	
LCS - % Recovery							
Polycyclic Aromatic Hydrocarbons	;						
Acenaphthene			%	111	70-130	Pass	
Acenaphthylene			%	106	70-130	Pass	
Anthracene			%	107	70-130	Pass	
Benz(a)anthracene			%	99	70-130	Pass	
Benzo(a)pyrene			%	97	70-130	Pass	
Benzo(b&j)fluoranthene			%	86	70-130	Pass	
Benzo(g.h.i)perylene			%	99	70-130	Pass	
Benzo(k)fluoranthene			%	105	70-130	Pass	
Chrysene			%	105	70-130	Pass	
Dibenz(a.h)anthracene			%	71	70-130	Pass	
Fluoranthene			%	93	70-130	Pass	
Fluorene			%	97	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	80	70-130	Pass	
Naphthalene			%	98	70-130	Pass	
Phenanthrene			%	100	70-130	Pass	
Pyrene			%	103	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Total Danassandhia Hadaaaadaasa							
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1			
TRH C10-C14	1999 NEPM Fract M20-JI27546	ions NCP	%	Result 1 88	70-130	Pass	
•			%	†	70-130	Pass	
TRH C10-C14	M20-JI27546	NCP	%	†	70-130	Pass	
TRH C10-C14 Spike - % Recovery	M20-JI27546	NCP	%	88	70-130	Pass	
TRH C10-C14 Spike - % Recovery Total Recoverable Hydrocarbons -	M20-Jl27546 2013 NEPM Fract	NCP ions		88 Result 1			
TRH C10-C14 Spike - % Recovery Total Recoverable Hydrocarbons - TRH >C10-C16	M20-JI27546 2013 NEPM Fract M20-JI27546	NCP ions		88 Result 1			
TRH C10-C14 Spike - % Recovery Total Recoverable Hydrocarbons - TRH >C10-C16 Spike - % Recovery	M20-JI27546 2013 NEPM Fract M20-JI27546	NCP ions		88 Result 1 86			
TRH C10-C14 Spike - % Recovery Total Recoverable Hydrocarbons - TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons	M20-JI27546 2013 NEPM Fract M20-JI27546	ions NCP	%	Result 1 86 Result 1	70-130	Pass	
TRH C10-C14 Spike - % Recovery Total Recoverable Hydrocarbons - TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene	M20-JI27546 2013 NEPM Fract M20-JI27546 M20-JI13719	NCP ions NCP	%	Result 1 86 Result 1 98	70-130 70-130	Pass Pass	
TRH C10-C14 Spike - % Recovery Total Recoverable Hydrocarbons - TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene	M20-JI27546 2013 NEPM Fract M20-JI27546 M20-JI13719 M20-JI13719	NCP ions NCP NCP	% % %	Result 1 86 Result 1 98 94	70-130 70-130 70-130	Pass Pass Pass	
TRH C10-C14 Spike - % Recovery Total Recoverable Hydrocarbons - TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene	M20-JI27546 2013 NEPM Fract M20-JI27546 M20-JI13719 M20-JI13719 M20-JI13719	NCP ions NCP NCP NCP NCP	% % % %	Result 1 86 Result 1 98 94 82	70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
TRH C10-C14 Spike - % Recovery Total Recoverable Hydrocarbons - TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene	M20-JI27546 2013 NEPM Fract M20-JI27546 M20-JI13719 M20-JI13719 M20-JI13719 M20-JI13719	NCP ions NCP NCP NCP NCP NCP NCP	% % % % %	Result 1 86 Result 1 98 94 82 92	70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	
TRH C10-C14 Spike - % Recovery Total Recoverable Hydrocarbons - TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene	M20-JI27546 2013 NEPM Fract M20-JI27546 M20-JI13719 M20-JI13719 M20-JI13719 M20-JI13719 M20-JI13719	NCP ions NCP NCP NCP NCP NCP NCP NCP	% % % % % %	Result 1 86 Result 1 98 94 82 92 95	70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 Spike - % Recovery Total Recoverable Hydrocarbons - TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene	M20-JI27546 2013 NEPM Fract M20-JI27546 M20-JI13719 M20-JI13719 M20-JI13719 M20-JI13719 M20-JI13719 M20-JI13719	NCP ions NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % %	Result 1 86 Result 1 98 94 82 92 95 95	70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 Spike - % Recovery Total Recoverable Hydrocarbons - TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	M20-JI27546 2013 NEPM Fract M20-JI27546 M20-JI13719 M20-JI13719 M20-JI13719 M20-JI13719 M20-JI13719 M20-JI13719 M20-JI13719	NCP ions NCP	% % % % % % %	Result 1 86 Result 1 98 94 82 92 95 95 90	70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 Spike - % Recovery Total Recoverable Hydrocarbons - TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene	M20-JI27546 2013 NEPM Fract M20-JI27546 M20-JI13719 M20-JI13719 M20-JI13719 M20-JI13719 M20-JI13719 M20-JI13719 M20-JI13719 M20-JI13719 M20-JI13719	NCP ions NCP	% % % % % % %	Result 1 86 Result 1 98 94 82 92 95 95 90 98	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 Spike - % Recovery Total Recoverable Hydrocarbons - TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene	M20-JI27546 2013 NEPM Fract M20-JI27546 M20-JI13719	NCP ions NCP	% % % % % % % %	Result 1 86 Result 1 98 94 82 92 95 95 90 98 84	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 Spike - % Recovery Total Recoverable Hydrocarbons - TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene	M20-JI27546 2013 NEPM Fract M20-JI27546 M20-JI13719	NCP ions NCP	% % % % % % % % %	Result 1 86 Result 1 98 94 82 92 95 95 90 98 84 102	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 Spike - % Recovery Total Recoverable Hydrocarbons - TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene	M20-JI27546 2013 NEPM Fract M20-JI27546 M20-JI13719	NCP ions NCP	% % % % % % % % % % % % % % %	Result 1 98 94 82 92 95 95 90 98 84 102 102	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 Spike - % Recovery Total Recoverable Hydrocarbons - TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene	M20-JI27546 2013 NEPM Fract M20-JI27546 M20-JI13719	NCP ions NCP	% % % % % % % % % % % % % % % %	Result 1 98 94 82 92 95 95 90 98 84 102 102 97	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 Spike - % Recovery Total Recoverable Hydrocarbons - TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene	M20-JI27546 2013 NEPM Fract M20-JI27546 M20-JI13719	NCP ions NCP	% % % % % % % % % % % % % % % % % % %	Result 1 86 Result 1 98 94 82 92 95 95 90 98 84 102 102 97 101	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	

Tool	Lab Camania ID	QA	Heite	Daguit 4			Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate									
Total Recoverable Hydrocarbo	ns - 1999 NEPM Frac	ions		Result 1	Result 2	RPD			
TRH C6-C9	M20-JI27738	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	M20-JI27545	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	M20-JI27545	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	M20-JI27545	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbo	ns - 2013 NEPM Frac	ions		Result 1	Result 2	RPD			
Naphthalene	M20-JI27738	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	M20-JI27738	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C10-C16	M20-Jl27545	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	M20-Jl27545	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	M20-Jl27545	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarl	bons			Result 1	Result 2	RPD			
Acenaphthene	M20-JI27308	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	M20-JI27308	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	M20-JI27308	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	M20-JI27308	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	M20-JI27308	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	M20-JI27308	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	M20-JI27308	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	M20-JI27308	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	M20-JI27308	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	M20-JI27308	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	M20-JI27308	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	M20-JI27308	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M20-JI27308	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	M20-JI27308	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	M20-JI27308	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	M20-JI27308	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
-				•			•	•	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 N/A

 Some samples have been subcontracted
 No

Qualifier Codes/Comments

Code Description

112 Where sampling date has not been provided, Eurofins | Environment Testing is not able to determine whether analysis has been performed within recommended holding times.

Authorised By

Savini Suduweli Analytical Services Manager
Emily Rosenberg Senior Analyst-Metal (VIC)
Harry Bacalis Senior Analyst-Volatile (VIC)
Joseph Edouard Senior Analyst-Organic (VIC)

and the second

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

JECT: 18688 È	(In			S S N	amplignation	ture: ler's :	C/k	36		BC ime:		YSI	S					COMPOSITING
SAMPLE NO.				SAN	TRIX	= `				(Jetokon)	FO						естер	INSTRUCTIONS:
	DISCRETE	COMPOSITE	GRAB	SOIL	WATER	BLANK /	MIZ	PAH	TRH	VOC (Trace	BAN BILL	811 E	105	HOLU		NO of CONTAINERS	-	
MW02- MW03- DUF-23/220					XXXX		XXX	XXX	XXX	XXX	X X	メイメ	XXX			-	3	
501-230720 PECON-230720 FILLP-230720 TRIF-230720					*	X								XXX			4 4	
TOTAL:											PEC	FIVE	D BY	: (sign				LCB 13
DISPATCHED BY: (sig	2	<i>j</i>	a /				(DATE			A	let i	le	14	ea	re	13	•	24/1
INITIAL RESULTS REMARKS:	EQUE	STE Ple	D WI	THIN	com	24h	irs ed C	OC, 8	Sam	48h	eceij	ot No	tifica	3 - 4	DAY:	and	invo atma	NORMAL ices to environmental.com
Please email resu	ılts to);		rmo	phill	lips@	gatm			nmer					d time t			

Chain of Custo modified after US EPA chain of custody for	_	R	ec			et t o	f į								A	tn	na	E	nvironmental
PROJECT: Elwood				ſE: ſ	Sign	npler natur	Α.	1	00	3,0	/								(5)
Site No: 1865B		,	DAT	E: 1	23	67	10	5_		Time	e:						_		
SAMPLE NO.					AMP ATR							ALYS OR:	SIS						COMPOSITING INSTRUCTIONS:
SPIL1,230+20	DISCRETE	COMPOSITE	GRAB	SOIL	XWATER	BLANK /	X SS	大学 一大	XPA								NO. of CONTAINERS	HIGH CONTAM EXPECTED	
5416 17 6704 20								/					,						
																			E
																	F		
																	F	F	
	F													5	6	7			
																1		1	Z
	F																		
TOTAL:	-																F		-
DISPATCHED BY: (sign)		_	_		1	(DAT	TE/TIM	E)	=	REC	EIVI	ED B	Y: (sig	gn)			_		(DATE/TIME
COURIERED BY: (sign)						(DA	FE/TIN	IE)		LAE	NAI	ME:	#	10	5				
NITIAL RESULTS REQUEREMARKS: Please email results to	Ple	D W	emai	l: I com	plet					ecei		otifica	3 - 4		lts ar			est	ORMAL O: onmental.com
NOTE: \(\triangle \text{ Must be completed.}\)	-4- 4:	4 !					idei					.dat!	ate an	al (t)	,				

1333 Mitthe Caux. 826

Environment Testing Melbourne
6 Monterey Road
Dandenong South Vic 3175 16 Mars Road
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Site # 1254 & 14271

Sydney
Unit F3, Building F
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: Atma Environmental

Contact name: Kyle Obrien **ELWOOD** Project name: Project ID: 1865B COC number: Not provided

Turn around time: 2 Day

Jul 24, 2020 2:15 PM Date/Time received:

Eurofins reference: 733826

Sample information

- V A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{Z} Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt: 13.6 degrees Celsius.
- \square All samples have been received as described on the above COC.
- COC has been completed correctly.
- V Attempt to chill was evident.
- **7** Appropriately preserved sample containers have been used.
- \mathbf{Z} All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- V Sample containers for volatile analysis received with zero headspace.
- \square Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.

Contact (if used).

If you have any questions with respect to these samples please contact:

Savini Suduweli on Phone : or by e.mail: SaviniSuduweli@eurofins.com

Results will be delivered electronically via e.mail to Kyle Obrien - kobrien@atmaenvironmental.com.

Atma Environmental 56 William St Abbotsford VIC 3067

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Kyle Obrien

 Report
 733826-W

 Project name
 ELWOOD

 Project ID
 1865B

 Received Date
 Jul 24, 2020

Client Sample ID			MW01	MW02	MW03	DUP-230720
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M20-JI40646	M20-JI40647	M20-JI40648	M20-JI40649
Date Sampled			Jul 23, 2020	Jul 23, 2020	Jul 23, 2020	Jul 23, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac	ctions					
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Volatile Organics (selected analytes by SIM)	•					
1.1-Dichloroethane (SIM)	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	-
1.1-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
1.2-Dibromoethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
1.2-Dichloroethane (SIM)	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	-
1.2-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
1.3-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
1.4-Dichlorobenzene (SIM)	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	-
2-Butanone (MEK)	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
2-Propanone (Acetone)	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
4-Chlorotoluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Allyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Bromobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Bromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Bromodichloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Bromoform	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Bromomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Carbon disulfide	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Carbon Tetrachloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	-

Client Sample ID			MW01	MW02	MW03	DUP-230720
Sample Matrix			Water	Water	Water	Water
·						
Eurofins Sample No.			M20-JI40646	M20-JI40647	M20-JI40648	M20-JI40649
Date Sampled			Jul 23, 2020	Jul 23, 2020	Jul 23, 2020	Jul 23, 2020
Test/Reference	LOR	Unit				
Volatile Organics (selected analytes by SIM)	T	,				
Chlorobenzene (SIM)	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	-
Chloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Chloroform	0.005	mg/L	< 0.005	< 0.005	< 0.005	-
Chloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
cis-1.2-Dichloroethene (SIM)	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	-
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Dibromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Dibromomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Dichlorodifluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
lodomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	-
Methylene chloride (SIM)	0.00002	mg/L	< 0.00002	< 0.00002	< 0.00002	-
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Styrene CMA	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Tetrachloroethene (SIM)	0.00002	mg/L	< 0.00002	< 0.00002	< 0.00002	-
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
trans-1.3-Dichloropropene Trichloroethene (SIM)	0.001	mg/L mg/L	< 0.001 < 0.00001	< 0.001 < 0.00001	< 0.001 < 0.00001	-
Trichlorofluoromethane	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	-
Vinyl chloride (SIM)	0.0001	mg/L	< 0.0005	< 0.0001	< 0.0005	-
Xylenes - Total*	0.0003	mg/L	< 0.0003	< 0.003	< 0.003	-
Toluene-d8 (surr.)	1	// // // // // // // // // // // // //	113	109	104	
4-Bromofluorobenzene (surr.)	1	%	92	89	87	_
Vic EPA IWRG 621 Other chlorinated hydrocarbons (Total)	0.005	mg/L	< 0.005	< 0.005	< 0.005	-
Vic EPA IWRG 621 Chlorinated hydrocarbons (Total)	0.005	mg/L	< 0.005	< 0.005	< 0.005	_
Total MAH*	0.003	mg/L	< 0.003	< 0.003	< 0.003	_
Total Recoverable Hydrocarbons - 2013 NEPM Frac	•	<u> </u>				
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Client Sample ID			MW01	MW02	MW03	DUP-230720
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M20-JI40646	M20-JI40647	M20-JI40648	M20-JI40649
Date Sampled			Jul 23, 2020	Jul 23, 2020	Jul 23, 2020	Jul 23, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	82	56	61	64
p-Terphenyl-d14 (surr.)	1	%	82	53	92	71
Chloride	1	mg/L	4900	520	3300	-
Sulphate (as SO4)	5	mg/L	430	420	720	-
Total Dissolved Solids Dried at 180°C ± 2°C	10	mg/L	10000	2600	8400	-
Alkalinity (speciated)						
Bicarbonate Alkalinity (as CaCO3)	20	mg/L	360	2000	820	-
Carbonate Alkalinity (as CaCO3)	10	mg/L	< 10	< 10	< 10	-
Hydroxide Alkalinity (as CaCO3)	20	mg/L	< 20	< 20	< 20	-
Total Alkalinity (as CaCO3)	20	mg/L	360	2000	820	-
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	0.002	0.008	0.003	0.002
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.016	0.003	0.18	0.018
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	0.003	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Molybdenum (filtered)	0.005	mg/L	< 0.005	0.014	< 0.005	< 0.005
Nickel (filtered)	0.001	mg/L	0.067	0.044	0.098	0.066
Selenium (filtered)	0.001	mg/L	0.002	0.007	0.004	0.002
Silver (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Tin (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Zinc (filtered)	0.005	mg/L	0.035	0.018	0.13	0.053
Alkali Metals						
Calcium	0.5	mg/L	430	32	510	
Magnesium	0.5	mg/L	530	45	390	-
Potassium	0.5	mg/L	83	36	73	-
Sodium	0.5	mg/L	1800	1300	1500	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Jul 24, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Jul 24, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Jul 24, 2020	
- Method: LTM-ORG-2010 TRH C6-C40			
Volatile Organics (selected analytes by SIM)	Melbourne	Jul 24, 2020	7 Days
- Method: LTM-ORG-2150 VOCs in Soils Liquid and Aqueous (SIM) (USEPA 8260)			
Polycyclic Aromatic Hydrocarbons	Melbourne	Jul 24, 2020	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals IWRG 621 : Metals M12 filtered	Melbourne	Jul 24, 2020	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B11C: Na/K/Ca/Mg	Melbourne	Jul 24, 2020	180 Days
- Method: LTM-MET-3010 Alkali Metals by ICP-AES			
Eurofins Suite B11E: Cl/SO4/Alkalinity			
Chloride	Melbourne	Jul 24, 2020	28 Days
- Method: LTM-INO-4090 Chloride by Discrete Analyser			
Sulphate (as SO4)	Melbourne	Jul 24, 2020	28 Days
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
Alkalinity (speciated)	Melbourne	Jul 24, 2020	14 Days
- Method: LTM-INO-4250 Alkalinity by Electrometric Titration			
Total Dissolved Solids Dried at 180°C ± 2°C	Melbourne	Jul 24, 2020	7 Days

- Method: LTM-INO-4170 Total Dissolved Solids in Water

ABN - 50 005 085 521 web : www.eurofins.com.au e.mail : EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Received:

Priority:

Contact Name:

Due:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Address:

Atma Environmental

56 William St

Abbotsford

VIC 3067

Project Name: Project ID:

ELWOOD 1865B

Order No.:

Phone:

Report #:

733826 9429 6955

Fax: 9429 5911

Sydney

Eurofins Analytical Services Manager: Savini Suduweli

New Zealand

Jul 24, 2020 2:15 PM

Jul 28, 2020

Kyle Obrien

		Sa	mple Detail			HOLD	Polycyclic Aromatic Hydrocarbons	Metals IWRG 621 : Metals M12 filtered	Volatile Organics (selected analytes by SIM)	Total Recoverable Hydrocarbons	Eurofins Suite B11E: CI/SO4/Alkalinity	Eurofins Suite B11C: Na/K/Ca/Mg	Total Dissolved Solids Dried at 180°C ± 2°C
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х	Х	Х	Х
Sydr	ney Laboratory	- NATA Site # 1	8217										
Bris	bane Laborator	y - NATA Site#	20794										
Pert	h Laboratory - N	IATA Site # 237	36										
Exte	rnal Laboratory	,											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	MW01	Jul 23, 2020		Water	M20-JI40646		Х	Х	Х	Х	Х	Х	Х
2	MW02	Jul 23, 2020		Water	M20-JI40647		Х	Х	Х	Х	Х	Х	Х
3	MW03	Jul 23, 2020		Water	M20-JI40648		Х	Х	Х	Х	Х	Х	Х
4	DUP-230720	Jul 23, 2020		Water	M20-JI40649		Х	Х		Х			
5	DECON- 230720	Jul 23, 2020		Water	M20-JI40650	Х							
6	FIELD-230720	Jul 23, 2020		Water	M20-JI40651	Х							
7	TRIP-230720	Jul 23, 2020		Water	M20-JI40652	Х							
Test	Counts					3	4	4	3	4	3	3	3

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	.				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
Volatile Organics (selected analytes by SIM)					
1.1-Dichloroethane (SIM)	mg/L	< 0.00001	0.00001	Pass	
1.1-Dichloroethene	mg/L	< 0.001	0.001	Pass	
1.1.1-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.1.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dibromoethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.2-Dichloroethane (SIM)	mg/L	< 0.00001	0.00001	Pass	
1.2-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.3-Trichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.4-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.3.5-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.4-Dichlorobenzene (SIM)	mg/L	< 0.00001	0.00001	Pass	
2-Butanone (MEK)	mg/L	< 0.001	0.001	Pass	
2-Propanone (Acetone)	mg/L	< 0.001	0.001	Pass	
4-Chlorotoluene	mg/L	< 0.001	0.001	Pass	
4-Methyl-2-pentanone (MIBK)	mg/L	< 0.001	0.001	Pass	
Allyl chloride	mg/L	< 0.001	0.001	Pass	
Benzene	mg/L	< 0.001	0.001	Pass	
Bromobenzene	mg/L	< 0.001	0.001	Pass	
Bromochloromethane	mg/L	< 0.001	0.001	Pass	
Bromodichloromethane	mg/L	< 0.001	0.001	Pass	
Bromoform	mg/L	< 0.001	0.001	Pass	
Bromomethane	mg/L	< 0.001	0.001	Pass	
Carbon disulfide	mg/L	< 0.001	0.001	Pass	
Carbon Tetrachloride	mg/L	< 0.001	0.001	Pass	
Chlorobenzene (SIM)	mg/L	< 0.00001	0.00001	Pass	
Chloroethane	mg/L	< 0.001	0.001	Pass	
Chloroform	mg/L	< 0.005	0.005	Pass	
Chloromethane	mg/L	< 0.001	0.001	Pass	
cis-1.2-Dichloroethene (SIM)	mg/L	< 0.00001	0.00001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Dibromochloromethane	mg/L	< 0.001	0.001	Pass	
Dibromomethane	mg/L	< 0.001	0.001	Pass	
Dichlorodifluoromethane	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
Iodomethane	mg/L	< 0.001	0.001	Pass	
Isopropyl benzene (Cumene)	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.001	0.001	Pass	
Methylene chloride (SIM)	mg/L	< 0.002	0.0002	Pass	
Monty lone of horide (Olivi)	IIIg/L	< 0.0002	0.0002	1 033	

Test	Units	Result 1		ptance mits	Pass Limits	Qualifying Code
Styrene	mg/L	< 0.001	0.	001	Pass	
Tetrachloroethene (SIM)	mg/L	< 0.00002	0.0	0002	Pass	
Toluene	mg/L	< 0.001	0.	001	Pass	
trans-1.2-Dichloroethene	mg/L	< 0.001	0.	001	Pass	
trans-1.3-Dichloropropene	mg/L	< 0.001	0.	001	Pass	
Trichloroethene (SIM)	mg/L	< 0.00001	0.0	0001	Pass	
Trichlorofluoromethane	mg/L	< 0.001	0.	001	Pass	
Vinyl chloride (SIM)	mg/L	< 0.00005	0.0	0005	Pass	
Xylenes - Total*	mg/L	< 0.003	0.	003	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/L	< 0.01	0	.01	Pass	
TRH C6-C10	mg/L	< 0.02	0	.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0	.05	Pass	
TRH >C16-C34	mg/L	< 0.1	().1	Pass	
TRH >C34-C40	mg/L	< 0.1).1	Pass	
Method Blank						
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/L	< 0.001	0.	001	Pass	
Acenaphthylene	mg/L	< 0.001	0.	001	Pass	
Anthracene	mg/L	< 0.001	0.	001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.	001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.	001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.	001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.	001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.	001	Pass	
Chrysene	mg/L	< 0.001	0.	001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.	001	Pass	
Fluoranthene	mg/L	< 0.001	0.	001	Pass	
Fluorene	mg/L	< 0.001	0.	001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.	001	Pass	
Naphthalene	mg/L	< 0.001	0.	001	Pass	
Phenanthrene	mg/L	< 0.001	0.	001	Pass	
Pyrene	mg/L	< 0.001	0.	001	Pass	
Method Blank						
Chloride	mg/L	< 1		1	Pass	
Sulphate (as SO4)	mg/L	< 5		5	Pass	
Total Dissolved Solids Dried at 180°C ± 2°C	mg/L	< 10		10	Pass	
Method Blank						
Alkalinity (speciated)						
Bicarbonate Alkalinity (as CaCO3)	mg/L	< 20	:	20	Pass	
Carbonate Alkalinity (as CaCO3)	mg/L	< 10		10	Pass	
Hydroxide Alkalinity (as CaCO3)	mg/L	< 20	:	20	Pass	
Total Alkalinity (as CaCO3)	mg/L	< 20		20	Pass	
Method Blank						
Heavy Metals						
Arsenic (filtered)	mg/L	< 0.001	0.	001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0	0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.	001	Pass	
Copper (filtered)	mg/L	< 0.001	0.	001	Pass	
Lead (filtered)	mg/L	< 0.001	0.	001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0	0001	Pass	
Molybdenum (filtered)	mg/L	< 0.005	0.	005	Pass	
Nickel (filtered)	mg/L	< 0.001	0.	001	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Selenium (filtered)	mg/L	< 0.001	0.001	Pass	
Silver (filtered)	mg/L	< 0.005	0.005	Pass	
Tin (filtered)	mg/L	< 0.005	0.005	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
Method Blank	<u>, , , , , , , , , , , , , , , , , , , </u>				
Alkali Metals					
Calcium	mg/L	< 0.5	0.5	Pass	
Magnesium	mg/L	< 0.5	0.5	Pass	
Potassium	mg/L	< 0.5	0.5	Pass	
Sodium	mg/L	< 0.5	0.5	Pass	
LCS - % Recovery	IIIg/L	10.0	0.5	1 433	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions		П	T		
TRH C6-C9	%	86	70-130	Pass	
TRH C10-C14	%	82	70-130	Pass	
	70	02	70-130	Pass	
LCS - % Recovery		Т	T	I	
Volatile Organics (selected analytes by SIM)	T 2/	400		_	
1.1-Dichloroethene	%	122	70-130	Pass	
1.1.1-Trichloroethane	%	119	70-130	Pass	
1.2-Dichlorobenzene	%	97	70-130	Pass	
Benzene	%	100	70-130	Pass	
Ethylbenzene	%	94	70-130	Pass	
m&p-Xylenes	%	90	70-130	Pass	
Toluene	%	123	70-130	Pass	
Xylenes - Total*	%	93	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	86	70-130	Pass	
TRH C6-C10	%	87	70-130	Pass	
TRH >C10-C16	%	80	70-130	Pass	
LCS - % Recovery	•				
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	117	70-130	Pass	
Acenaphthylene	%	117	70-130	Pass	
Anthracene	%	113	70-130	Pass	
Benz(a)anthracene	%	74	70-130	Pass	
Benzo(a)pyrene	%	95	70-130	Pass	
Benzo(b&j)fluoranthene	%	78	70-130	Pass	
Benzo(g.h.i)perylene	%	98	70-130	Pass	
Benzo(k)fluoranthene	%	99	70-130	Pass	
, ,		 			
Chrysene	%	112	70-130	Pass	
Dibenz(a.h)anthracene	%	92	70-130	Pass	
Fluoranthene	%	99	70-130	Pass	
Fluorene	%	100	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	99	70-130	Pass	
Naphthalene	%	105	70-130	Pass	
Phenanthrene	%	86	70-130	Pass	
Pyrene	%	99	70-130	Pass	
LCS - % Recovery			,		
Chloride	%	100	70-130	Pass	
Sulphate (as SO4)	%	98	70-130	Pass	
Total Dissolved Solids Dried at 180°C ± 2°C	%	102	70-130	Pass	
LCS - % Recovery					
Alkalinity (speciated)					
Carbonate Alkalinity (as CaCO3)	%	118	70-130	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Total Alkalinity (as CaCO3)			%	121	70-130	Pass	
LCS - % Recovery							
Alkali Metals							
Calcium			%	90	80-120	Pass	
Magnesium			%	93	80-120	Pass	
Potassium			%	90	80-120	Pass	
Sodium			%	101	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1			
TRH C10-C14	M20-JI38762	NCP	%	116	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1			
TRH >C10-C16	M20-JI38762	NCP	%	115	70-130	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocarbor	ns			Result 1			
Acenaphthene	S20-JI25246	NCP	%	106	70-130	Pass	
Acenaphthylene	S20-JI25246	NCP	%	102	70-130	Pass	
Anthracene	S20-JI25246	NCP	%	88	70-130	Pass	
Benz(a)anthracene	S20-JI25246	NCP	%	103	70-130	Pass	
Benzo(a)pyrene	S20-JI25246	NCP	%	108	70-130	Pass	
Benzo(b&j)fluoranthene	S20-JI25246	NCP	%	104	70-130	Pass	
Benzo(g.h.i)perylene	S20-JI25246	NCP	%	122	70-130	Pass	
Benzo(k)fluoranthene	S20-JI25246	NCP	%	93	70-130	Pass	
		NCP	%	129			
Chrysene	S20-JI25246	 			70-130	Pass	
Dibenz(a.h)anthracene	S20-JI25246	NCP	%	113	70-130	Pass	
Fluoranthene	S20-JI25246	NCP	%	109	70-130	Pass	
Fluorene	S20-JI25246	NCP	%	107	70-130	Pass	,
Indeno(1.2.3-cd)pyrene	S20-JI25246	NCP	%	120	70-130	Pass	
Naphthalene	S20-JI25246	NCP	%	87	70-130	Pass	
Phenanthrene	S20-JI25246	NCP	%	104	70-130	Pass	
Pyrene	S20-JI25246	NCP	%	109	70-130	Pass	
Spike - % Recovery						1	
	1			Result 1			
Chloride	P20-JI36654	NCP	%	101	70-130	Pass	
Sulphate (as SO4)	P20-JI36654	NCP	%	86	70-130	Pass	
Spike - % Recovery							
Alkalinity (speciated)				Result 1			
Bicarbonate Alkalinity (as CaCO3)	M20-My31793	NCP	%	100	70-130	Pass	
Carbonate Alkalinity (as CaCO3)	M20-My31783	NCP	%	113	70-130	Pass	
Total Alkalinity (as CaCO3)	M20-My31783	NCP	%	112	70-130	Pass	
Spike - % Recovery							
Alkali Metals				Result 1			
Calcium	B20-JI36939	NCP	%	98	75-125	Pass	
Magnesium	B20-JI36939	NCP	%	99	75-125	Pass	
Potassium	B20-JI36939	NCP	%	93	75-125	Pass	
Sodium	B20-JI36939	NCP	%	111	75-125	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic (filtered)	M20-JI41948	NCP	%	116	75-125	Pass	
Cadmium (filtered)	M20-JI41948	NCP	%	96	75-125	Pass	
Chromium (filtered)	M20-JI41948	NCP	%	93	75-125	Pass	
Copper (filtered)	M20-JI41948	NCP	%	86	75-125	Pass	
Lead (filtered)	M20-JI41948	NCP	%	95	75-125	Pass	1

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Mercury (filtered)	M20-JI41948	NCP	%	97			75-125	Pass	
Molybdenum (filtered)	M20-JI41948	NCP	%	86			75-125	Pass	
Nickel (filtered)	M20-JI41948	NCP	%	89			75-125	Pass	
Selenium (filtered)	M20-JI41948	NCP	%	118			75-125	Pass	
Silver (filtered)	M20-JI41948	NCP	%	93			75-125	Pass	
Tin (filtered)	M20-JI41948	NCP	%	102			75-125	Pass	
Zinc (filtered)	M20-JI41948	NCP	%	92			75-125	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons -	- 1999 NEPM Fract	ions		Result 1					
TRH C6-C9	M20-JI39407	NCP	%	109			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1					
Naphthalene	M20-JI39407	NCP	%	83			70-130	Pass	
TRH C6-C10	M20-JI39407	NCP	%	104			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate		Source					Lillits	Lillius	Code
Total Recoverable Hydrocarbons -	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	B20-JI36933	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	B20-JI36933	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	B20-JI36933	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate	B20 0100000	110.	mg/ =	0.1	0.1		0070	1 400	
Total Recoverable Hydrocarbons -	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	B20-JI36933	NCP	mg/L	< 0.05	< 0.05	<u> </u>	30%	Pass	
TRH >C16-C34	B20-JI36933	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	B20-JI36933	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate	<u> </u>	1101	nig/L	- 0.1	1 0.1	- 11	0070	1 400	
Polycyclic Aromatic Hydrocarbons	<u> </u>			Result 1	Result 2	RPD			
Acenaphthene	M20-JI35583	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	M20-JI35583	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	M20-JI35583	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	M20-JI35583	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	M20-JI35583	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	M20-JI35583	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	M20-JI35583	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	M20-JI35583	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	M20-JI35583	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	M20-JI35583	NCP		< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	M20-JI35583	NCP	mg/L mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	M20-JI35583	NCP		< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M20-JI35583 M20-JI35583	NCP	mg/L	< 0.001	< 0.001	<u><1</u>	30%	Pass	
1 /1 /	M20-JI35583 M20-JI35583	NCP	mg/L	< 0.001	< 0.001	<u><1</u>	30%	Pass	
Naphthalene Phenanthrene	M20-JI35583 M20-JI35583	NCP	mg/L	< 0.001	< 0.001	<u><1</u>	30%	Pass	
	M20-JI35583 M20-JI35583	NCP	mg/L	< 0.001	< 0.001	<1 <1	30%	Pass	
Pyrene Duplicate	IVIZU-JI33363	INCP	mg/L	V.001	\ 0.001	<u> </u>	3070	газз	
				Result 1	Result 2	RPD			
Chloride	N20-JI37643	NCP	mg/L	24	25	3.0	30%	Pass	
Sulphate (as SO4)	N20-JI37643	NCP	mg/L	240	250	5.0	30%	Pass	
Total Dissolved Solids Dried at			_						
180°C ± 2°C	M20-JI39158	NCP	mg/L	11000	14000	24	30%	Pass	
Duplicate Alkalinity (speciated)				Popult 1	Posult 3	DDD			
Alkalinity (speciated)	M00 II40040	NOD I	m c:/l	Result 1	Result 2 150	3.0	30%	Pass	
Disarbanata Alkalinita (0-000)						4 ()	51 19/6	P288	i .
Bicarbonate Alkalinity (as CaCO3)	M20-JI40018	NCP	mg/L	160					
Bicarbonate Alkalinity (as CaCO3) Carbonate Alkalinity (as CaCO3) Hydroxide Alkalinity (as CaCO3)	M20-JI40018 M20-JI40018 M20-JI40018	NCP NCP	mg/L mg/L	51 < 20	59 < 20	14	30%	Pass Pass	

Duplicate									
Alkali Metals				Result 1	Result 2	RPD			
Calcium	B20-JI36939	NCP	mg/L	18	15	18	30%	Pass	
Magnesium	B20-JI36939	NCP	mg/L	22	20	11	30%	Pass	
Potassium	B20-JI36939	NCP	mg/L	9.5	9.4	<1	30%	Pass	
Sodium	B20-JI36939	NCP	mg/L	1300	1200	1.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	M20-JI41948	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	M20-JI41948	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	M20-JI41948	NCP	mg/L	0.005	0.005	3.0	30%	Pass	
Copper (filtered)	M20-JI41948	NCP	mg/L	0.003	0.003	10	30%	Pass	
Lead (filtered)	M20-JI41948	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	M20-JI41948	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Molybdenum (filtered)	M20-JI41948	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Nickel (filtered)	M20-JI41948	NCP	mg/L	0.005	0.004	6.0	30%	Pass	
Selenium (filtered)	M20-JI41948	NCP	mg/L	0.015	0.015	3.0	30%	Pass	
Silver (filtered)	M20-JI41948	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Tin (filtered)	M20-JI41948	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc (filtered)	M20-JI41948	NCP	mg/L	0.007	0.007	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarb	ons - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M20-Jl39421	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons - 2013 NEPM Fractions				Result 1	Result 2	RPD			
Naphthalene	M20-Jl39421	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	M20-JI39421	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Description Code

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

N02

Savini Suduweli Analytical Services Manager Emily Rosenberg Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC) Scott Beddoes Senior Analyst-Inorganic (VIC)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 733826-W

Environment Testing Melbourne
6 Monterey Road
Dandenong South Vic 3175 16 Mars Road
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail : EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Atma Environmental Company name:

Contact name: Glenn Berry **ELWOOD** Project name: Project ID: 1865B COC number: Not provided

Turn around time: 2 Day

Jul 24, 2020 5:09 PM Date/Time received:

Eurofins reference: 733886

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Ø All samples have been received as described on the above COC.
- \mathbf{Z} COC has been completed correctly.
- \mathbf{Z} Attempt to chill was evident.
- V Appropriately preserved sample containers have been used.
- \square All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \square Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Savini Suduweli on Phone : or by e.mail: SaviniSuduweli@eurofins.com

Results will be delivered electronically via e.mail to Glenn Berry - gberry@atmaenvironmental.com.

Further Sample Analysis Request Atma Environmental Sheet 1 of 1 Date: 24/07/20 (Samples Despatched On: 15/07/2020) Previous Report Number: 732366 PROJECT: 1865B ELWOOD COMPOSITING SAMPLE SAMPLE NO. MATRIX: **ANALYSIS** INSTRUCTIONS: **TRH/BTEXN** CONTAINERS COMPOSIT DISCRETE WATER GRAB SOIL **PAHs** BH2/0.5 Х Χ Χ 1 J128275-HT248 BH3/0.5 Χ Х 1 T128277_ BH5/0.5 Х Χ Χ 1 T128426-BH6/0.5 X Х 1 T128287~ BH7/0.5 Χ Х X Х 1 J128283-BH8/0.5 Χ X Х 1 5128285-HT351 BH9/0.5 Х Χ 1 J128286 BH10/0.5 X Х 1 7128287 BH12/0.1 Χ J128241-97427 Χ Х 1 BH13/0.5 Χ J128289-HT3+1 X X 1 BH14/0.5 Х Χ 1 J128292-BH18/0.5 Х Х X 1 J128299-BH19/0.5 Х Х 1 J128301-BH22/0.5 Х X 1 J128305-BH24/0.5 Χ Х 1 J128309-HTB52 BH25/0.5 Х Χ Χ 1 J128310-BH26/0.5 Х X Χ Х 1 J128312-BH28/0.5 Χ Х Χ 1 T128314-BH29/0.5 Х Χ Х Χ 1 J128319-BH29/1.0 Х X X 1 T128316-BH33/0.5 Х X X X 1 J128323 BH35/0.5 х X 1 T128325-BH36/0.5 Х X 1 J128326-T2/0.5 X JI28330-HT 153 Х X X 1 MW3/1.0 Х X 1 Not on original Total: 25 14 18 12 25 REQUESTED BY: (sign) LAB NAME: Eurofins 1127284DATE/TIME 5:00 Vn. 24/7 Jake Fzum 732271 GLENN BERRY 24/07/2020 REC'D FOR LAB BY: (sign) FINAL RESULTS SHALL BE AVAILABLE WITHIN: 24 Hr 48 Hr 3 Day NORMAL REMARKS: Email Results to: 733886 gberry@atmaenvironmental.com kobrien@atmaenvironmental.com NOTE: △ Must be completed by Atma Environmental Must be completed with date and time by laboratory.

#AU_CAU001_EnviroSampleVic

From:

Michael Cassidy

Sent:

Friday, 24 July 2020 5:09 PM

To:

#AU_CAU001_EnviroSampleVic

Cc:

Savini Suduweli Kondage

Subject:

URGENT 2 DAY TAT ADDITIONAL ANALYSIS FW: Eurofins FASR - Report 732366:

Site ELWOOD (1865B)

Attachments:

1865B FSAR Soil 24.7.2020.pdf

Thanks Canh,

Kind Regards,

Michael Cassidy

Phone: 8564 5940 Mobile: 0498 700 069

Email: MichaelCassidy@eurofins.com

From: Glenn Berry <gberry@atmaenvironmental.com>

Sent: Friday, 24 July 2020 5:06 PM

To: Michael Cassidy < Michael Cassidy@eurofins.com >

Cc: Kyle O'Brien < kobrien@atmaenvironmental.com >; Julian Hawkins < Julian. Hawkins@portphillip.vic.gov.au >

Subject: RE: Eurofins FASR - Report 732366 : Site ELWOOD (1865B)

EXTERNAL EMAIL*

Hi Mic

Please refer to attached further sample analysis request (48 Hr TAT) re this batch of soils from Elwood.

Regards,

Glenn Berry, CEnvP

Director | Principal Environmental Consultant

Atma Environmental

56 William Street, ABBOTSFORD, Vic 3067 Australia

Tel: +61-3-9429 6955 Fax: +61-3-9429 5911 Mob: +61-412 000 445

Email: gberry@atmaenvironmental.com Web: www.atmaenvironmental.com

From: MichaelCassidy@eurofins.com < MichaelCassidy@eurofins.com >

Sent: Tuesday, 21 July 2020 3:42 PM

To: Glenn Berry <gberry@atmaenvironmental.com> Cc: Kyle O'Brien < kobrien@atmaenvironmental.com>

Subject: Eurofins Test Results, Invoice - Report 732366 : Site ELWOOD (1865B)

Atma Environmental 56 William St Abbotsford VIC 3067

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Glenn Berry

Report733886-SProject nameELWOODProject ID1865BReceived DateJul 24, 2020

Client Sample ID			BH2/0.5	BH3/0.5	BH5/0.5	BH6/0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-JI41160	M20-JI41161	M20-JI41162	M20-JI41163
Date Sampled			Jul 15, 2020	Jul 15, 2020	Jul 15, 2020	Jul 15, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	'	'				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	13	0.8
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	13	1.1
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	13	1.4
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	0.7	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	3.0	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	7.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	8.4	0.7
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5	6.1	0.6
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	5.0	0.6
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	6.4	0.6
Chrysene	0.5	mg/kg	< 0.5	< 0.5	6.8	0.6
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	1.9	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	0.6	16	0.8
Fluorene	0.5	mg/kg	< 0.5	< 0.5	0.6	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	4.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	0.9	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	13	< 0.5
Pyrene	0.5	mg/kg	0.5	0.6	16	0.9
Total PAH*	0.5	mg/kg	0.5	1.2	96.8	4.8
2-Fluorobiphenyl (surr.)	1	%	98	88	88	82
p-Terphenyl-d14 (surr.)	1	%	79	86	88	77
Heavy Metals						
Arsenic	2	mg/kg	4.2	-	36	-
Barium	10	mg/kg	11	-	140	-
Beryllium	2	mg/kg	< 2	-	< 2	-
Boron	10	mg/kg	< 10	-	< 10	-
Cadmium	0.4	mg/kg	< 0.4	-	1.3	-
Chromium	5	mg/kg	6.0	-	25	-
Cobalt	5	mg/kg	< 5	-	8.3	-
Copper	5	mg/kg	< 5	-	1500	-
Lead	5	mg/kg	9.8	-	580	-
Manganese	5	mg/kg	42	-	210	-
Mercury	0.1	mg/kg	< 0.1	-	2.8	-
Molybdenum	5	mg/kg	< 5	-	< 5	-

Client Sample ID Sample Matrix			BH2/0.5 Soil	BH3/0.5 Soil	BH5/0.5 Soil	BH6/0.5 Soil
Eurofins Sample No.			M20-JI41160	M20-JI41161	M20-JI41162	M20-JI41163
Date Sampled			Jul 15, 2020	Jul 15, 2020	Jul 15, 2020	Jul 15, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Nickel	5	mg/kg	< 5	-	38	-
Selenium	2	mg/kg	< 2	-	< 2	-
Silver	0.2	mg/kg	< 0.2	-	0.9	-
Tin	10	mg/kg	< 10	-	59	-
Zinc	5	mg/kg	7.7	-	1500	-
% Moisture	1	%	8.8	8.2	5.6	7.3

Client Sample ID			BH7/0.5	BH8/0.5	BH9/0.5	BH10/0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-JI41164	M20-JI41165	M20-JI41166	M20-JI41167
Date Sampled			Jul 15, 2020	Jul 15, 2020	Jul 15, 2020	Jul 15, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	•	•				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	6.1	0.8	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	6.1	1.1	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	6.1	1.4	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	2.5	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	4.4	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	3.9	0.7	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	2.9	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	2.7	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	3.9	0.6	-
Chrysene	0.5	mg/kg	< 0.5	4.6	0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	0.8	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	9.4	0.9	-
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	2.5	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	8.5	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	9.9	1.0	-
Total PAH*	0.5	mg/kg	< 0.5	56	3.7	-
2-Fluorobiphenyl (surr.)	1	%	84	84	140	-
p-Terphenyl-d14 (surr.)	1	%	80	82	77	-
Heavy Metals						
Arsenic	2	mg/kg	4.1	14	-	2.7
Barium	10	mg/kg	16	54	-	< 10
Beryllium	2	mg/kg	< 2	< 2	-	< 2
Boron	10	mg/kg	< 10	< 10	-	< 10
Cadmium	0.4	mg/kg	< 0.4	< 0.4	-	< 0.4
Chromium	5	mg/kg	6.9	16	-	< 5
Cobalt	5	mg/kg	< 5	< 5	-	< 5
Copper	5	mg/kg	5.3	14	-	< 5
Lead	5	mg/kg	45	140	-	< 5
Manganese	5	mg/kg	34	58	-	22
Mercury	0.1	mg/kg	0.2	0.1	-	< 0.1

Report Number: 733886-S

Client Sample ID			BH7/0.5	BH8/0.5	BH9/0.5	BH10/0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-JI41164	M20-JI41165	M20-JI41166	M20-JI41167
Date Sampled			Jul 15, 2020	Jul 15, 2020	Jul 15, 2020	Jul 15, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Molybdenum	5	mg/kg	< 5	< 5	-	< 5
Nickel	5	mg/kg	< 5	9.2	-	< 5
Selenium	2	mg/kg	< 2	< 2	-	< 2
Silver	0.2	mg/kg	< 0.2	0.2	-	< 0.2
Tin	10	mg/kg	11	< 10	-	< 10
Zinc	5	mg/kg	34	76	-	33
% Moisture	1	%	8.7	11	10	14
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	-	-	-
TRH C10-C14	20	mg/kg	< 20	-	-	-
TRH C15-C28	50	mg/kg	< 50	-	-	-
TRH C29-C36	50	mg/kg	< 50	-	-	-
TRH C10-C36 (Total)	50	mg/kg	< 50	-	-	-
втех						
Benzene	0.1	mg/kg	< 0.1	-	-	-
Toluene	0.1	mg/kg	< 0.1	-	-	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	-	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	-	-
o-Xylene	0.1	mg/kg	< 0.1	-	-	-
Xylenes - Total*	0.3	mg/kg	< 0.3	-	-	-
4-Bromofluorobenzene (surr.)	1	%	88	-	-	-
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	-	-
TRH C6-C10	20	mg/kg	< 20	-	-	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	-	-
TRH >C10-C16	50	mg/kg	< 50	-	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	-	-
TRH >C16-C34	100	mg/kg	< 100	-	-	-
TRH >C34-C40	100	mg/kg	< 100	-	-	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	-	-

Client Sample ID			BH12/0.1 Soil	BH13/0.5 Soil	BH14/0.5 Soil	BH18/0.5 Soil
Sample Matrix						
Eurofins Sample No.			M20-JI41168	M20-JI41169	M20-JI41170	M20-JI41171
Date Sampled			Jul 15, 2020	Jul 15, 2020	Jul 15, 2020	Jul 15, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	0.8	-	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	1.1	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.4	-	-	1.2
Acenaphthene	0.5	mg/kg	< 0.5	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	-	-	< 0.5
Anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	0.7	-	-	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-	< 0.5

				1	1	1
Client Sample ID			BH12/0.1	BH13/0.5	BH14/0.5	BH18/0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-JI41168	M20-JI41169	M20-JI41170	M20-JI41171
Date Sampled			Jul 15, 2020	Jul 15, 2020	Jul 15, 2020	Jul 15, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(k)fluoranthene	0.5	mg/kg	0.7	-	-	< 0.5
Chrysene	0.5	mg/kg	< 0.5	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5
Fluoranthene	0.5	mg/kg	0.7	-	-	< 0.5
Fluorene	0.5	mg/kg	< 0.5	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	-	-	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	-	-	< 0.5
Pyrene	0.5	mg/kg	0.8	-	-	< 0.5
Total PAH*	0.5	mg/kg	2.9	-	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	90	-	-	92
p-Terphenyl-d14 (surr.)	1	%	120	-	-	82
Heavy Metals	•	_				
Arsenic	2	mg/kg	5.7	2.9	-	6.5
Barium	10	mg/kg	22	13	-	< 10
Beryllium	2	mg/kg	< 2	< 2	-	< 2
Boron	10	mg/kg	11	< 10	-	< 10
Cadmium	0.4	mg/kg	< 0.4	< 0.4	-	< 0.4
Chromium	5	mg/kg	9.2	< 5	-	< 5
Cobalt	5	mg/kg	< 5	< 5	-	< 5
Copper	5	mg/kg	12	5.3	-	< 5
Lead	5	mg/kg	92	6.6	-	12
Manganese	5	mg/kg	67	90	-	21
Mercury	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Molybdenum	5	mg/kg	< 5	< 5	-	< 5
Nickel	5	mg/kg	6.6	< 5	-	< 5
Selenium	2	mg/kg	< 2	< 2	-	< 2
Silver	0.2	mg/kg	0.2	< 0.2	-	< 0.2
Tin	10	mg/kg	< 10	< 10	-	< 10
Zinc	5	mg/kg	180	44	-	19
% Moisture	1	%	7.1	7.5	7.4	3.8
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	-	< 20	< 20	-
TRH C10-C14	20	mg/kg	-	< 20	< 20	-
TRH C15-C28	50	mg/kg	-	< 50	88	-
TRH C29-C36	50	mg/kg	-	< 50	90	-
TRH C10-C36 (Total)	50	mg/kg	-	< 50	178	-
ВТЕХ						
Benzene	0.1	mg/kg	-	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	-	< 0.1	< 0.1	-
Ethylbenzene	0.1	mg/kg	-	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	-	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	-	< 0.1	< 0.1	-
Xylenes - Total*	0.3	mg/kg	-	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	-	81	81	-
1 Distribution (buil.)	<u> </u>	/0		1 01	1 01	

Client Sample ID Sample Matrix			BH12/0.1 Soil	BH13/0.5 Soil	BH14/0.5 Soil	BH18/0.5 Soil
Eurofins Sample No.			M20-JI41168	M20-JI41169	M20-JI41170	M20-JI41171
Date Sampled			Jul 15, 2020	Jul 15, 2020	Jul 15, 2020	Jul 15, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	< 0.5	-
TRH C6-C10	20	mg/kg	-	< 20	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	< 20	-
TRH >C10-C16	50	mg/kg	-	< 50	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	< 50	-
TRH >C16-C34	100	mg/kg	-	< 100	140	-
TRH >C34-C40	100	mg/kg	-	< 100	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	140	-

Client Sample ID			BH19/0.5	BH22/0.5	BH24/0.5	BH25/0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-JI41172	M20-JI41173	M20-JI41174	M20-JI41175
Date Sampled			Jul 15, 2020	Jul 15, 2020	Jul 15, 2020	Jul 15, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	·					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	7.4	< 0.5	-	1.9
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	8.4	0.6	-	2.2
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	9.4	1.2	-	2.4
Acenaphthene	0.5	mg/kg	< 2	< 0.5	-	< 0.5
Acenaphthylene	0.5	mg/kg	< 2	< 0.5	-	< 0.5
Anthracene	0.5	mg/kg	< 2	< 0.5	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	4.0	< 0.5	-	1.0
Benzo(a)pyrene	0.5	mg/kg	5.8	< 0.5	-	1.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	3.8	< 0.5	-	0.9
Benzo(g.h.i)perylene	0.5	mg/kg	4.0	< 0.5	-	0.9
Benzo(k)fluoranthene	0.5	mg/kg	4.2	< 0.5	-	1.3
Chrysene	0.5	mg/kg	5.0	< 0.5	-	1.0
Dibenz(a.h)anthracene	0.5	mg/kg	< 2	< 0.5	-	< 0.5
Fluoranthene	0.5	mg/kg	13	0.5	-	1.9
Fluorene	0.5	mg/kg	< 2	< 0.5	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	2.9	< 0.5	-	0.8
Naphthalene	0.5	mg/kg	< 2	< 0.5	-	< 0.5
Phenanthrene	0.5	mg/kg	3.8	< 0.5	-	1.1
Pyrene	0.5	mg/kg	9.0	0.6	-	2.1
Total PAH*	0.5	mg/kg	55.5	1.1	-	12.5
2-Fluorobiphenyl (surr.)	1	%	95	81	-	80
p-Terphenyl-d14 (surr.)	1	%	69	78	-	80
Heavy Metals						
Arsenic	2	mg/kg	-	-	8.3	18
Barium	10	mg/kg	-	-	36	49
Beryllium	2	mg/kg	-	-	< 2	< 2
Boron	10	mg/kg	-	-	< 10	22
Cadmium	0.4	mg/kg	-	-	< 0.4	< 0.4
Chromium	5	mg/kg	-	-	17	42
Cobalt	5	mg/kg	-	-	6.2	12
Copper	5	mg/kg	-	-	19	22
Lead	5	mg/kg	-	-	73	39
Manganese	5	mg/kg	-	-	99	140

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			BH19/0.5 Soil M20-JI41172 Jul 15, 2020	BH22/0.5 Soil M20-JI41173 Jul 15, 2020	BH24/0.5 Soil M20-JI41174 Jul 15, 2020	BH25/0.5 Soil M20-JI41175 Jul 15, 2020
Test/Reference	LOR	Unit				
Heavy Metals	<u> </u>					
Mercury	0.1	mg/kg	-	-	< 0.1	0.2
Molybdenum	5	mg/kg	-	-	< 5	< 5
Nickel	5	mg/kg	-	-	26	38
Selenium	2	mg/kg	-	-	< 2	< 2
Silver	0.2	mg/kg	-	-	< 0.2	< 0.2
Tin	10	mg/kg	-	-	< 10	< 10
Zinc	5	mg/kg	-	-	75	81
% Moisture	1	%	8.9	5.1	5.8	14

Client Sample ID			BH26/0.5	BH28/0.5	BH29/0.5	BH29/1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-JI41176	M20-JI41177	M20-JI41178	M20-JI41179
Date Sampled			Jul 15, 2020	Jul 15, 2020	Jul 15, 2020	Jul 15, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	1.1	1.0	2.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	1.4	1.3	2.7
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.7	1.6	3.0
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	0.5	1.4
Benzo(a)pyrene	0.5	mg/kg	< 0.5	0.9	0.8	1.9
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	0.6	0.6	1.2
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	0.7	0.6	1.2
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	0.8	0.8	1.7
Chrysene	0.5	mg/kg	< 0.5	0.6	0.7	1.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	0.9	0.9	2.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	0.5	< 0.5	1.0
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.5
Pyrene	0.5	mg/kg	< 0.5	1.0	1.0	2.8
Total PAH*	0.5	mg/kg	< 0.5	6	5.9	16.7
2-Fluorobiphenyl (surr.)	1	%	86	81	83	107
p-Terphenyl-d14 (surr.)	1	%	81	77	78	78
Heavy Metals						
Arsenic	2	mg/kg	4.2	-	5.1	-
Barium	10	mg/kg	< 10	-	13	-
Beryllium	2	mg/kg	< 2	-	< 2	-
Boron	10	mg/kg	< 10	-	16	-
Cadmium	0.4	mg/kg	< 0.4	-	< 0.4	-
Chromium	5	mg/kg	< 5	-	6.7	-
Cobalt	5	mg/kg	< 5	-	< 5	-
Copper	5	mg/kg	< 5	-	9.7	-
Lead	5	mg/kg	5.3	-	55	-

Client Sample ID			BH26/0.5	BH28/0.5	BH29/0.5	BH29/1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-JI41176	M20-JI41177	M20-JI41178	M20-JI41179
Date Sampled			Jul 15, 2020	Jul 15, 2020	Jul 15, 2020	Jul 15, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Manganese	5	mg/kg	35	-	34	-
Mercury	0.1	mg/kg	< 0.1	-	< 0.1	-
Molybdenum	5	mg/kg	< 5	-	< 5	-
Nickel	5	mg/kg	6.0	-	5.8	-
Selenium	2	mg/kg	< 2	-	< 2	-
Silver	0.2	mg/kg	< 0.2	-	< 0.2	-
Tin	10	mg/kg	< 10	-	< 10	-
Zinc	5	mg/kg	9.4	-	83	-
		-				
% Moisture	1	%	3.3	8.1	11	12
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	67	61	84
TRH C29-C36	50	mg/kg	< 50	110	110	96
TRH C10-C36 (Total)	50	mg/kg	< 50	177	171	180
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	93	86	79	130
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	130	130	140
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	130	130	140

Client Sample ID Sample Matrix			BH33/0.5 Soil	BH35/0.5 Soil	BH36/0.5 Soil	R16 T2/0.5 Soil
Eurofins Sample No.			M20-JI41180	M20-JI41181	M20-JI41182	M20-JI41183
Date Sampled			Jul 15, 2020	Jul 15, 2020	Jul 15, 2020	Jul 15, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	-	150
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	-	150
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	-	150
Acenaphthene	0.5	mg/kg	< 0.5	-	-	11
Acenaphthylene	0.5	mg/kg	< 0.5	-	-	6.6
Anthracene	0.5	mg/kg	< 0.5	-	-	56
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-	99
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	-	99

Client Sample ID			BH33/0.5	BH35/0.5	BH36/0.5	R16 T2/0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-JI41180	M20-JI41181	M20-JI41182	M20-JI41183
·						
Date Sampled			Jul 15, 2020	Jul 15, 2020	Jul 15, 2020	Jul 15, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	-	68
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-	57
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	-	74
Chrysene	0.5	mg/kg	< 0.5	-	-	87
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-	21
Fluoranthene	0.5	mg/kg	< 0.5	-	-	230
Fluorene	0.5	mg/kg	< 0.5	-	-	9.2
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	53
Naphthalene	0.5	mg/kg	< 0.5	-	-	3.1
Phenanthrene	0.5	mg/kg	< 0.5	-	-	210
Pyrene Tatal DALI*	0.5	mg/kg	< 0.5	-	-	240
Total PAH*	0.5	mg/kg	< 0.5	-	-	1323.9
2-Fluorobiphenyl (surr.)	1	%	119	-	-	66
p-Terphenyl-d14 (surr.)	1	%	110	-	-	81
Heavy Metals	<u> </u>	T				
Arsenic	2	mg/kg	9.4	-	-	5.4
Barium	10	mg/kg	23	-	-	36
Beryllium	2	mg/kg	< 2	-	-	< 2
Boron	10	mg/kg	< 10	-	-	< 10
Cadmium	0.4	mg/kg	< 0.4	-	-	< 0.4
Chromium	5	mg/kg	7.2	-	-	11
Cobalt	5	mg/kg	< 5	-	-	11
Copper	5	mg/kg	11	-	-	21
Lead	5	mg/kg	35	-	-	50
Manganese	5	mg/kg	63	-	-	210
Mercury	0.1	mg/kg	< 0.1	-	-	< 0.1
Molybdenum	5	mg/kg	< 5	-	-	< 5
Nickel	5	mg/kg	11	-	-	49
Selenium	2	mg/kg	< 2	-	-	< 2
Silver	0.2	mg/kg	< 0.2	-	-	< 0.2
Tin 	10	mg/kg	< 10	-	-	< 10
Zinc	5	mg/kg	80	-	-	73
		1				
% Moisture	1 1	%	6.6	9.1	7.0	8.1
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ections	<u> </u>				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 100
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	110
TRH C15-C28	50	mg/kg	< 50	160	230	7600
TRH C29-C36	50	mg/kg	< 50	82	210	3100
TRH C10-C36 (Total)	50	mg/kg	< 50	242	440	10810
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.5
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.5
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.5
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 1
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.5
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 1.5
4-Bromofluorobenzene (surr.)	1	%	87	91	114	115

07011	370	210	001 >	шд/кд	100	TRH >C10-C40 (total)*
0011	001 >	001 >	001 >	шд\кд	100	TRH >C34-C40
0096	370	210	001 >	шд\кд	100	TRH >C16-C34
074	< 20	< 20	< 20	шд\кд	90	TRH >C10-C16 less Naphthalene (F2) ^{NO1}
074	< 20	< 20	< 20	шд\кд	90	TRH >C10-C16
001 >	< 20	< 20	< 20	шმ\қа	50	TRH C6-C10 less BTEX (F1) ^{NO4}
001 >	< 20	< 20	< 20	ша\қа	50	TRH C6-C10
S.S >	g.0 >	G.0 >	g.0 >	шმ\қа	6.0	Naphthalene ^{voz}
					suo	Total Recoverable Hydrocarbons - 2013 NEPM Fract
				tinU	ГОВ	Test/Reference
Jul 15, 2020	Jul 15, 2020	1 0202 ՝91 InC	Jul 15, 2020			Date Sampled
M20-JI41183	M20-JI41182	181141L-02M	M20-JI41180			Eurofins Sample No.
lioS	lio2	lioS	lio2			Sample Matrix
R16 T2/0.5	BH36/0.5	BH32\0.5	BH33\0.5			Client Sample ID

001 >	ша/ка	100	TRH >C10-C40 (total)*
001 >	ша/ка	100	TRH >C34-C40
001 >	ша/ка	100	TRH >C16-C34
< 20	ша/ка	90	TRH >C10-C16 less Naphthalene (F2) ^{NO1}
< 20	ша/ка	90	TRH >C10-C16
< 50	ша/ка	50	TRH C6-C10 less BTEX (F1) ^{N04}
< 20	ша/ка	50	TRH C6-C10
6.0 >	ша/ка	G.0	Naphthalene ^{voz}
		suo	Total Recoverable Hydrocarbons - 2013 NEPM Fract
64	%	l	4-Bromofluorobenzene (surr.)
£.0 >	ша/ка	5.0	Xylenes - Total*
1.0 >	ша/ка	1.0	o-Xylene
2.0 >	ша/ка	2.0	səuəl/X-dym
1.0 >	ша/ка	1.0	Ethylbenzene
1.0 >	ша/ка	1.0	Toluene
1.0 >	ша/ка	١.0	Benzene
			ХЭТВ
< 20	ша\ка	90	TRH C10-C36 (Total)
> 20	ша/ка	20	ТКН C29-C36
< 20	ша/ка	90	TRH C15-C28
< 50	ша/ка	50	TRH C10-C14
< 50	ша/ка	20	TRH C6-C9
		suo	Total Recoverable Hydrocarbons - 1999 NEPM Fract
2.8	%	l	% Moisture
	∄inU	ГОВ	epinerence
Jul 15, 2020			Date Sampled
M20-JI41184			Eurofins Sample No.
lioS			Sample Matrix
0. r\EWM			Client Sample ID
			2. 7 0 ,

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Melbourne	Jul 24, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
VIC EPA Metals : Metals M17	Melbourne	Jul 24, 2020	180 Days
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
% Moisture	Melbourne	Jul 24, 2020	14 Days
- Method: LTM-GEN-7080 Moisture			
Eurofins Suite B1			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Jul 24, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Melbourne	Jul 24, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Jul 24, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Jul 24, 2020	
- Method: LTM-ORG-2010 TRH C6-C40			

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

ABN - 50 005 085 521

Address:

Atma Environmental

56 William St

Abbotsford

VIC 3067

Project Name: Project ID:

ELWOOD 1865B

Order No.:

Fax:

Report #: Phone:

733886 9429 6955

9429 5911

Jul 24, 2020 5:09 PM Received:

Due: Jul 28, 2020 Priority: 2 Day **Contact Name:** Glenn Berry

Eurofins Analytical Services Manager : Savini Suduweli

		Polycyclic Aromatic Hydrocarbons	VIC EPA Metals : Metals M17	Moisture Set	Eurofins Suite B1				
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х
Sydı	ney Laboratory	- NATA Site # 1	8217						
Bris	bane Laborator	y - NATA Site#	20794						
Pert	h Laboratory - I	NATA Site # 237	'36						
Exte	rnal Laboratory	<u>'</u>	I	1					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	BH2/0.5	Jul 15, 2020		Soil	M20-JI41160	Х	Х	Х	
2	BH3/0.5	Jul 15, 2020		Soil	M20-JI41161	Х		Х	
3	BH5/0.5	Jul 15, 2020		Soil	M20-JI41162	Х	Х	Х	Щ
4	BH6/0.5	Jul 15, 2020		Soil	M20-JI41163	Х		Х	
5	BH7/0.5	Jul 15, 2020		Soil	M20-JI41164	Х	Х	Х	Х
6	BH8/0.5	Jul 15, 2020		Soil	M20-JI41165	Х	Х	Х	Щ
7	BH9/0.5	Jul 15, 2020		Soil	M20-JI41166	Х		Х	Щ
8	BH10/0.5	Jul 15, 2020		Soil	M20-JI41167		Х	Х	\sqcup
9	BH12/0.1	Jul 15, 2020		Soil	M20-JI41168	Х	Х	Х	Щ
10	BH13/0.5	Jul 15, 2020		Soil	M20-JI41169		Х	Х	Х

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Atma Environmental

56 William St

Abbotsford

VIC 3067

Project Name: Project ID:

Address:

ELWOOD 1865B

Order No.:

Report #: Phone:

Fax:

733886 9429 6955

9429 5911

Sydney

Received: Jul 24, 2020 5:09 PM

Due: Jul 28, 2020 Priority: 2 Day **Contact Name:** Glenn Berry

Eurofins Analytical Services Manager: Savini Suduweli

		Sa	mple Detail			Polycyclic Aromatic Hydrocarbons	VIC EPA Metals : Metals M17	Moisture Set	Eurofins Suite B1
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	71		Х	Х	Х	Х
Sydı	ney Laboratory	- NATA Site # 1	8217						
Bris	bane Laborator	y - NATA Site #	20794						
Pert	h Laboratory - N	NATA Site # 237	736	1	T				
11	BH14/0.5	Jul 15, 2020		Soil	M20-JI41170			Х	Х
12	BH18/0.5	Jul 15, 2020		Soil	M20-JI41171	X	Х	Х	
13	BH19/0.5	Jul 15, 2020		Soil	M20-JI41172	X		Х	
14	BH22/0.5	Jul 15, 2020		Soil	M20-JI41173	X		Х	
15	BH24/0.5	Jul 15, 2020		Soil	M20-JI41174		Х	Х	
16	BH25/0.5	Jul 15, 2020		Soil	M20-JI41175	Х	Х	Х	
17	BH26/0.5	Jul 15, 2020		Soil	M20-JI41176	Х	Х	Х	Х
18	BH28/0.5	Jul 15, 2020		Soil	M20-JI41177	Х		Х	Х
19	BH29/0.5	Jul 15, 2020		Soil	M20-JI41178	Х	Х	Х	Х
20								Х	Х
21	BH33/0.5	Jul 15, 2020		Soil	M20-JI41180	Х	Х	Х	Х
22	BH35/0.5	Jul 15, 2020		Soil	M20-JI41181			Х	Х
23	BH36/0.5	Jul 15, 2020		Soil	M20-JI41182			Χ	Х

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Atma Environmental

56 William St Abbotsford

VIC 3067

Project Name: Project ID:

ELWOOD 1865B

Order No.:

Report #: Phone:

733886 9429 6955

9429 5911 Fax:

Sydney

Received: Jul 24, 2020 5:09 PM

Due: Jul 28, 2020 Priority: 2 Day **Contact Name:** Glenn Berry

Eurofins Analytical Services Manager: Savini Suduweli

New Zealand

		Sa	mple Detail			Polycyclic Aromatic Hydrocarbons	VIC EPA Metals : Metals M17	Moisture Set	Eurofins Suite B1
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Χ	Χ	Х	Х
Sydr	ey Laboratory	- NATA Site # 1	8217						
Brist	oane Laboratory	y - NATA Site#	20794						
Pertl	Laboratory - N	ATA Site # 237	36						
24	T2/0.5	Jul 15, 2020		Soil	M20-JI41183	Х	Х	Х	Х
25	MW3/1.0	Jul 15, 2020		Soil	M20-JI41184			Х	Х
Test	Counts					18	14	25	12

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Barium	mg/kg	< 10	10	Pass	
Beryllium	mg/kg	< 2	2	Pass	
Boron	mg/kg	< 10	10	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Cobalt	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Manganese	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Molybdenum	mg/kg	< 5	5	Pass	
Nickel	mg/kg	< 5	5	Pass	
Selenium	mg/kg	< 2	2	Pass	
Silver	mg/kg	< 0.2	0.2	Pass	
Tin	mg/kg	< 10	10	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank	ı myrky	, , , , ,		1 833	
BTEX			T		
Benzene	mg/kg	< 0.1	0.1	Pass	
		< 0.1	0.1	Pass	
Toluene	mg/kg	i i			
Ethylbenzene men Yulongo	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	ns			Liiiito	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
LCS - % Recovery	1 3 3				
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	78	70-130	Pass	
Acenaphthylene	%	83	70-130	Pass	
Anthracene	%	98	70-130	Pass	
Benz(a)anthracene	%	80	70-130	Pass	
Benzo(a)pyrene	%	83	70-130	Pass	
Benzo(b&j)fluoranthene	%	80	70-130	Pass	
Benzo(g.h.i)perylene	%	71	70-130	Pass	
Benzo(k)fluoranthene	%	92	70-130	Pass	
Chrysene	%	82	70-130	Pass	
Dibenz(a.h)anthracene	%	74	70-130	Pass	
Fluoranthene	%	78	70-130	Pass	
Fluorene	%	84	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	74	70-130	Pass	
Naphthalene	%	93	70-130	Pass	
Phenanthrene	%	87	70-130		
	%	 		Pass	
Pyrene		82	70-130	Pass	
LCS - % Recovery		T T	T		
Heavy Metals		100		_	
Arsenic	%	106	80-120	Pass	
Barium	%	105	80-120	Pass	
Beryllium	%	114	80-120	Pass	
Boron	%	112	80-120	Pass	
Cadmium	%	97	80-120	Pass	
Chromium	%	107	80-120	Pass	
Cobalt	%	105	80-120	Pass	
Copper	%	112	80-120	Pass	
Lead	%	107	80-120	Pass	
Manganese	%	108	80-120	Pass	
Mercury	%	97	80-120	Pass	
Molybdenum	%	107	80-120	Pass	
Nickel	%	109	80-120	Pass	
Selenium	%	103	80-120	Pass	
Silver	%	100	80-120	Pass	
Tin	%	103	80-120	Pass	
Zinc	%	107	80-120	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	ns				
TRH C6-C9	%	108	70-130	Pass	
TRH C10-C14	%	103	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	110	70-130	Pass	
Toluene	%	125	70-130	Pass	
Ethylbenzene	%	110	70-130	Pass	
m&p-Xylenes	%	116	70-130	Pass	
sp /giones	1 /0	, ,, v	10-100	. 455	l

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery							
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	tions					
Naphthalene			%	107	70-130	Pass	
TRH C6-C10			%	98	70-130	Pass	
TRH >C10-C16			%	106	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery						ı	
Total Recoverable Hydrocarbons				Result 1			
TRH C6-C9	M20-JI41324	NCP	%	84	70-130	Pass	
TRH C10-C14	M20-JI41090	NCP	%	93	70-130	Pass	
Spike - % Recovery						T	
ВТЕХ				Result 1			
Benzene	M20-JI41324	NCP	%	85	70-130	Pass	
Toluene	M20-JI41324	NCP	%	99	70-130	Pass	
Ethylbenzene	M20-JI41324	NCP	%	81	70-130	Pass	
m&p-Xylenes	M20-JI41324	NCP	%	89	70-130	Pass	
o-Xylene	M20-JI41324	NCP	%	92	70-130	Pass	
Xylenes - Total*	M20-JI41324	NCP	%	90	70-130	Pass	
Spike - % Recovery				T = ". T		l	
Total Recoverable Hydrocarbons			0/	Result 1	70.400	_	
Naphthalene	M20-JI41324	NCP	%	82	70-130	Pass	
TRH C6-C10	M20-JI41324	NCP	%	76	70-130	Pass	
TRH >C10-C16	M20-JI41090	NCP	%	93	70-130	Pass	
Spike - % Recovery				D K 4		l	
Heavy Metals	M20-JI41167	СР	%	Result 1	75 105	Door	
Arsenic Barium	M20-JI41167	CP	% %	102	75-125 75-125	Pass Pass	
Beryllium	M20-JI41167	CP		102	75-125	Pass	
Boron	M20-JI41167	CP		97	75-125	Pass	
Cadmium	M20-JI41167	CP	//	96	75-125	Pass	
Chromium	M20-JI41167	CP	 %	108	75-125	Pass	
Cobalt	M20-JI41167	CP	%	104	75-125	Pass	
Copper	M20-JI41167	CP	%	107	75-125	Pass	
Lead	M20-JI41167	CP	 %	104	75-125	Pass	
Manganese	M20-JI41167	CP	%	111	75-125	Pass	
Mercury	M20-JI41167	CP	%	100	75-125	Pass	
Molybdenum	M20-JI41167	CP	%	105	75-125	Pass	
Nickel	M20-JI41167	CP	%	107	75-125	Pass	
Selenium	M20-JI41167	СР	%	95	75-125	Pass	
Silver	M20-JI41167	СР	%	96	75-125	Pass	
Tin	M20-JI41167	СР	%	103	75-125	Pass	
Zinc	M20-JI41167	СР	%	102	75-125	Pass	
Spike - % Recovery						,	
Polycyclic Aromatic Hydrocarbor	ns			Result 1			
Acenaphthene	M20-JI41171	СР	%	79	70-130	Pass	
Acenaphthylene	M20-JI41171	CP	%	82	70-130	Pass	
Anthracene	M20-JI41171	СР	%	95	70-130	Pass	
Benz(a)anthracene	M20-JI41171	СР	%	77	70-130	Pass	
Benzo(a)pyrene	M20-JI41171	СР	%	83	70-130	Pass	
Benzo(b&j)fluoranthene	M20-JI41171	CP	%	83	70-130	Pass	
Benzo(g.h.i)perylene	M20-JI41171	СР	%	70	70-130	Pass	
Benzo(k)fluoranthene	M20-JI41171	СР	%	85	70-130	Pass	
Chrysene	M20-JI41171	CP	%	83	70-130	Pass	
Dibenz(a.h)anthracene	M20-JI41171	CP	%	72	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Fluoranthene	M20-JI41171	СР	%	77			70-130	Pass	
Fluorene	M20-JI41171	СР	%	82			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M20-JI41171	СР	%	73			70-130	Pass	
Naphthalene	M20-JI41171	СР	%	78			70-130	Pass	
Phenanthrene	M20-JI41171	СР	%	85			70-130	Pass	
Pyrene	M20-JI41171	СР	%	78			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	M20-JI41163	CP	%	7.3	8.2	12	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	N20-JI37528	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M20-JI38758	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M20-JI38758	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M20-JI38758	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	N20-JI37528	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	N20-JI37528	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	N20-JI37528	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	N20-JI37528	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	N20-JI37528	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	N20-JI37528	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	N20-JI37528	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	N20-JI37528	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	M20-JI38758	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M20-JI38758	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	M20-JI38758	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				1					
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M20-JI41165	CP	mg/kg	14	13	2.0	30%	Pass	
Barium	M20-JI41165	CP	mg/kg	54	54	<1	30%	Pass	
Beryllium	M20-JI41165	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Boron	M20-JI41165	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Cadmium	M20-JI41165	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M20-JI41165	CP	mg/kg	16	16	1.0	30%	Pass	
Cobalt	M20-JI41165	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	M20-JI41165	CP	mg/kg	14	14	<1	30%	Pass	
Lead	M20-JI41165	CP	mg/kg	140	140	<1	30%	Pass	
Manganese	M20-JI41165	CP	mg/kg	58	57	1.0	30%	Pass	
Mercury	M20-JI41165	CP	mg/kg	0.1	0.1	<1	30%	Pass	
Molybdenum	M20-JI41165	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Nickel	M20-JI41165	CP	mg/kg	9.2	9.1	1.0	30%	Pass	
Selenium	M20-JI41165	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Silver	M20-JI41165	CP	mg/kg	0.2	< 0.2	3.0	30%	Pass	
Tin	M20-JI41165	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Zinc	M20-JI41165	CP	mg/kg	76	76	1.0	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M20-JI41167	СР	mg/kg	2.7	2.7	1.0	30%	Pass	
Barium	M20-JI41167	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Beryllium	M20-JI41167	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Boron	M20-JI41167	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Cadmium	M20-JI41167	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M20-JI41167	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Cobalt	M20-JI41167	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	M20-JI41167	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	M20-JI41167	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Manganese	M20-JI41167	CP	mg/kg	22	21	1.0	30%	Pass	
Mercury	M20-JI41167	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Molybdenum	M20-JI41167	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Nickel	M20-JI41167	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Selenium	M20-JI41167	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Silver	M20-JI41167	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tin	M20-JI41167	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Zinc	M20-JI41167	CP	mg/kg	33	33	1.0	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbo	ons			Result 1	Result 2	RPD			
Acenaphthene	M20-JI41168	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M20-JI41168	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M20-JI41168	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M20-JI41168	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M20-JI41168	CP	mg/kg	0.7	0.7	3.0	30%	Pass	
Benzo(b&j)fluoranthene	M20-JI41168	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M20-JI41168	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M20-JI41168	CP	mg/kg	0.7	0.6	14	30%	Pass	
Chrysene	M20-JI41168	CP	mg/kg	< 0.5	0.5	9.0	30%	Pass	
Dibenz(a.h)anthracene	M20-JI41168	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M20-JI41168	CP	mg/kg	0.7	0.9	20	30%	Pass	
Fluorene	M20-JI41168	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M20-JI41168	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M20-JI41168	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M20-JI41168	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M20-JI41168	CP	mg/kg	0.8	1.0	21	30%	Pass	
Duplicate									
		•		Result 1	Result 2	RPD			
% Moisture	M20-JI41173	CP	%	5.1	6.0	16	30%	Pass	
Duplicate					, .				
			1	Result 1	Result 2	RPD			
% Moisture	M20-JI41183	CP	%	8.1	8.1	15	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code	Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

R16 The LORs have been raised due to the high concentration of one or more analytes

Authorised By

N02

Savini Suduweli Analytical Services Manager Emily Rosenberg Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Environment Testing Melbourne
6 Monterey Road
Dandenong South Vic 3175 16 Mars Road
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail : EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Atma Environmental Company name:

Contact name: Glenn Berry **ELWOOD** Project name: Project ID: 1865B COC number: Not provided

Turn around time: 3 Day

Jul 28, 2020 12:16 PM Date/Time received:

Eurofins reference: 734380

Sample information

- V A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{Z} Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt : 6 degrees Celsius.
- \square All samples have been received as described on the above COC.
- \boxtimes COC has been completed correctly.
- V Attempt to chill was evident.
- **7** Appropriately preserved sample containers have been used.
- \mathbf{Z} All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used). N/A

Contact notes

If you have any questions with respect to these samples please contact:

Savini Suduweli on Phone : or by e.mail: SaviniSuduweli@eurofins.com

Results will be delivered electronically via e.mail to Glenn Berry - gberry@atmaenvironmental.com.

	-	13 1	10	qu	est					A	tma	Envirohmental
ate: 28/	07/20	0	(San	nples	s De	spatch	ed On	: 15/0	7/2020	0)		7
			Prev	ious	Rep	ort Nu	nber:	733	886			
DD.												
		SA	MPL	E I	-						-	COMPOSITING
							T -	NAL	YSIS			INSTRUCTIONS:
COMPOSITE	GRAB	SOIL	WATER	BLANK /	M17	PAHs					CONTAINERS	
		х			Х					-	1	- 128301 HT
-		Х	-	-		_	+	-			-	_ JUZ8280 HTB
	×				×	X						=
-				-			-		-	-	-	
												-
+				-	-	-	-			-	\vdash	_
					111							_
						+	+	\vdash		+	\vdash	_
										1		_
							+					_
							1					
+							+			+		
-												
+							+					
+					\vdash		+					
										I la		-
			E/TIM		2	2 LAB N			ofins			(DATE/TIME)
	COMPOSITE	OSITE	COMPOSITE GRAB * * SOIL	COMPOSITE GRAB X X SOIL WATER	COMPOSITE COMPOSITE COMPOSITE WATEIX: BLANK /	SAMPLE MATRIX: COMPOSITE WATER WATER X X X X X X X X X X X X X	SAMPLE MATRIX: COMPOSITE WATER X X X X X X X X X X X X X	SAMPLE MATER X X X X X X X X X X X X X X X X X X X	SAMPLE MATRIX: ANALER X X X X X X X X X X X X X X X X X X X	SAMPLE MATRIX: ANALYSIS COWDOSITE X X X X X X X X X X X X X X X X X X X	SAMPLE MATRIX: ANALYSIS SAMPLE MATRIX: ANALYSIS REPORT OF THE MATRIX ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS	SAMPLE MATRIX: ANALYSIS OCOMBOSITE NAMINERS OCOMBOSITE OCOMBOSITE

#AU_CAU001_EnviroSampleVic

From: Savini Suduweli Kondage

Sent: Tuesday, 28 July 2020 12:23 PM

To: Kyle O'Brien

Cc: Glenn Berry; #AU_CAU001_EnviroSampleVic; Catherine Wilson

Subject: RE: FSAR Elwood 1865B

Attachments: 1865B FSAR Soil 28.7.2020.pdf

Hi Kyle,

Thanks for sending that through.

SR – Please see attached for additional analysis.

Kind Regards, Savini Suduweli

Phone: +61 3 8564 5051 Mobile: +61 447 222 760

Email : SaviniSuduweli@eurofins.com

From: Kyle O'Brien <kobrien@atmaenvironmental.com>

Sent: Tuesday, July 28, 2020 12:16 PM

To: Savini Suduweli Kondage <SaviniSuduweli@eurofins.com>

Cc: Glenn Berry <gberry@atmaenvironmental.com>

Subject: FSAR Elwood 1865B

EXTERNAL EMAIL*

Hi Savini,

Please find the attached FSAR for Elwood on 3-4 Day TAT.

Cheers,

Kyle O'Brien, Senior Environmental Scientist

Atma Environmental

56 William Street, ABBOTSFORD, Vic 3067 Australia

Tel: +61-3-9429 6955 Fax: +61-3-9429 5911 Mob: +61-490 196 114

E-mail: kobrien a atmaenvironmental.com Web: www.atmaenvironmental.com

Follow us on

Linked in

Please consider the environment before printing this email.

Click here to report this email as spam.

ScannedByWebsenseForEurofins

Atma Environmental 56 William St Abbotsford VIC 3067

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Glenn Berry

Report734380-SProject nameELWOODProject ID1865BReceived DateJul 28, 2020

Client Sample ID			BH19/0.5	BH19/1.0	BH05/1.0
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			M20-JI45877	M20-JI45878	M20-JI45879
Date Sampled			Jul 15, 2020	Jul 15, 2020	Jul 15, 2020
Test/Reference	LOR	Unit			
Heavy Metals	1	1			
Arsenic	2	mg/kg	6.6	-	39
Barium	10	mg/kg	130	-	14
Beryllium	2	mg/kg	< 2	-	< 2
Boron	10	mg/kg	< 10	-	< 10
Cadmium	0.4	mg/kg	0.6	-	< 0.4
Chromium	5	mg/kg	16	-	22
Cobalt	5	mg/kg	14	-	< 5
Copper	5	mg/kg	74	-	30
Lead	5	mg/kg	310	-	35
Manganese	5	mg/kg	260	-	33
Mercury	0.1	mg/kg	0.1	-	0.1
Molybdenum	5	mg/kg	< 5	-	< 5
Nickel	5	mg/kg	61	-	5.3
Selenium	2	mg/kg	< 2	-	< 2
Silver	0.2	mg/kg	< 0.2	-	< 0.2
Tin	10	mg/kg	< 10	-	< 10
Zinc	5	mg/kg	310	-	53
	·				
% Moisture	1	%	8.6	11	4.6
Polycyclic Aromatic Hydrocarbons					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	3.9	0.9
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	3.9	1.2
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	3.9	1.5
Acenaphthene	0.5	mg/kg	-	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	-	< 0.5	< 0.5
Anthracene	0.5	mg/kg	-	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	1.7	0.6
Benzo(a)pyrene	0.5	mg/kg	-	2.7	0.7
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	1.8	0.6
Benzo(g.h.i)perylene	0.5	mg/kg	-	1.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	2.4	0.7
Chrysene	0.5	mg/kg	-	1.9	0.7
Dibenz(a.h)anthracene	0.5	mg/kg	-	0.5	< 0.5
Fluoranthene	0.5	mg/kg	-	3.6	1.7
Fluorene	0.5	mg/kg	-	< 0.5	< 0.5

Client Sample ID			BH19/0.5	BH19/1.0	BH05/1.0
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			M20-JI45877	M20-JI45878	M20-JI45879
Date Sampled			Jul 15, 2020	Jul 15, 2020	Jul 15, 2020
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons					
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	1.2	< 0.5
Naphthalene	0.5	mg/kg	-	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	-	1.6	0.8
Pyrene	0.5	mg/kg	-	3.9	1.8
Total PAH*	0.5	mg/kg	-	22.8	7.6
2-Fluorobiphenyl (surr.)	1	%	-	70	68
p-Terphenyl-d14 (surr.)	1	%	_	81	84

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
VIC EPA Metals : Metals M17	Melbourne	Jul 28, 2020	180 Days
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
Polycyclic Aromatic Hydrocarbons	Melbourne	Jul 28, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
% Moisture	Melbourne	Jul 28, 2020	14 Days

- Method: LTM-GEN-7080 Moisture

Report Number: 734380-S

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Address:

Project ID:

Atma Environmental

56 William St

Abbotsford VIC 3067

Project Name:

ELWOOD 1865B

Order No.:

Report #: Phone:

Fax:

734380 9429 6955 9429 5911

Jul 28, 2020 12:16 PM Received: Due: Jul 31, 2020 Priority: **Contact Name:**

3 Day Glenn Berry

New Zealand

Eurofins Analytical Services Manager: Savini Suduweli

		Sal	mple Detail			Polycyclic Aromatic Hydrocarbons	VIC EPA Metals : Metals M17	Moisture Set	
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х	Х	
Sydn	ey Laboratory	- NATA Site # 1	8217						
Brisk	oane Laboratory	/ - NATA Site #	20794						
Perth	Laboratory - N	IATA Site # 237	36						
Exte	rnal Laboratory								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	BH19/0.5	Jul 15, 2020		Soil	M20-JI45877		Х	Х	
2	BH19/1.0	Jul 15, 2020		Soil	M20-JI45878	Х		Х	
3	BH05/1.0	Jul 15, 2020		Soil	M20-JI45879	Х	Х	Х	
Test	Counts					2	2	3	

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins Environment Testing 6 Monterey Road, Dandenong South, Victoria, Australia 3175 Page 5 of 9

ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 734380-S

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Barium	mg/kg	< 10	10	Pass	
Beryllium	mg/kg	< 2	2	Pass	
Boron	mg/kg	< 10	10	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Cobalt	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Manganese	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Molybdenum	mg/kg	< 5	5	Pass	
Nickel	mg/kg	< 5	5	Pass	
Selenium	mg/kg	< 2	2	Pass	
Silver	mg/kg	< 0.2	0.2	Pass	
Tin	mg/kg	< 10	10	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank	Ilig/kg	1 10		1 433	
Polycyclic Aromatic Hydrocarbons		П			
Acenaphthene	ma/ka	< 0.5	0.5	Pass	
·	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg		0.5	+	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
LCS - % Recovery				T	
Heavy Metals	1				
Arsenic	%	99	80-120	Pass	
Barium	%	105	80-120	Pass	
Beryllium	%	99	80-120	Pass	
Boron	%	98	80-120	Pass	
Cadmium	%	93	80-120	Pass	
Chromium	%	106	80-120	Pass	
Cobalt	%	106	80-120	Pass	
Copper	%	103	80-120	Pass	
Lead	%	107	80-120	Pass	
Manganese	%	105	80-120	Pass	
Mercury	%	95	80-120	Pass	
Molybdenum	%	102	80-120	Pass	
Nickel	%	102	80-120	Pass	

Report Number: 734380-S

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Selenium			%	100	80-120	Pass	
Silver			%	94	80-120	Pass	
Tin			%	103	80-120	Pass	
Zinc			%	101	80-120	Pass	
LCS - % Recovery				•	•		
Polycyclic Aromatic Hydrocarbons	S						
Acenaphthene			%	78	70-130	Pass	
Acenaphthylene			%	83	70-130	Pass	
Anthracene			%	95	70-130	Pass	
Benz(a)anthracene			%	77	70-130	Pass	
Benzo(a)pyrene			%	99	70-130	Pass	
Benzo(b&j)fluoranthene			%	104	70-130	Pass	
Benzo(g.h.i)perylene			%	77	70-130	Pass	
Benzo(k)fluoranthene			%	105	70-130	Pass	
Chrysene			%	76	70-130	Pass	
Dibenz(a.h)anthracene			%	78	70-130	Pass	
Fluoranthene			%	78	70-130	Pass	
Fluorene			%	83	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	78	70-130	Pass	
Naphthalene			%	73	70-130	Pass	
Phenanthrene			%	87	70-130	Pass	
Pyrene			// 0	80	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	M20-JI45662	NCP	%	108	75-125	Pass	
Barium	M20-JI45662	NCP	%	126	75-125	Fail	Q08
Beryllium	M20-JI45662	NCP	%	95	75-125	Pass	
Boron	M20-JI45662	NCP	%	82	75-125	Pass	
Cadmium	M20-JI45662	NCP	%	112	75-125	Pass	
Chromium	M20-JI45662	NCP	%	110	75-125	Pass	
Cobalt	M20-JI45662	NCP	%	110	75-125	Pass	
Copper	M20-JI45662	NCP	%	113	75-125	Pass	
Lead	M20-JI45662	NCP	%	116	75-125	Pass	
Manganese	M20-JI45662	NCP	%	108	75-125	Pass	
Mercury	M20-JI45662	NCP	%	105	75-125	Pass	
Molybdenum	M20-JI45662	NCP	%	114	75-125	Pass	
Nickel	M20-JI45662	NCP	%	113	75-125	Pass	
- tions:							
Selenium					75-125	Pass	
Selenium Silver	M20-JI45662	NCP	%	109	75-125 75-125	Pass Pass	
Silver	M20-JI45662 M20-JI45662	NCP NCP	% %	109 111	75-125	Pass	
Silver Tin	M20-JI45662 M20-JI45662 M20-JI45662	NCP NCP NCP	% % %	109 111 113	75-125 75-125	Pass Pass	
Silver Tin Zinc	M20-JI45662 M20-JI45662	NCP NCP	% %	109 111	75-125	Pass	
Silver Tin Zinc Spike - % Recovery	M20-Jl45662 M20-Jl45662 M20-Jl45662 M20-Jl45662	NCP NCP NCP	% % %	109 111 113 109	75-125 75-125	Pass Pass	
Silver Tin Zinc Spike - % Recovery Polycyclic Aromatic Hydrocarbons	M20-Jl45662 M20-Jl45662 M20-Jl45662 M20-Jl45662	NCP NCP NCP NCP	% % % %	109 111 113 109 Result 1	75-125 75-125 75-125	Pass Pass Pass	
Silver Tin Zinc Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene	M20-JI45662 M20-JI45662 M20-JI45662 M20-JI45662	NCP NCP NCP NCP	% % % %	109 111 113 109 Result 1	75-125 75-125 75-125 70-130	Pass Pass Pass Pass	
Silver Tin Zinc Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene	M20-JI45662 M20-JI45662 M20-JI45662 M20-JI45662 S M20-JI41171 M20-JI41171	NCP NCP NCP NCP	% % % %	109 111 113 109 Result 1 79 82	75-125 75-125 75-125 75-125 70-130 70-130	Pass Pass Pass Pass Pass	
Silver Tin Zinc Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene	M20-JI45662 M20-JI45662 M20-JI45662 M20-JI45662 M20-JI41171 M20-JI41171 M20-JI41171	NCP NCP NCP NCP NCP	% % % % %	109 111 113 109 Result 1 79 82 95	75-125 75-125 75-125 75-125 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass	
Silver Tin Zinc Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene	M20-JI45662 M20-JI45662 M20-JI45662 M20-JI45662 M20-JI41662 S M20-JI41171 M20-JI41171 M20-JI41171	NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % %	109 111 113 109 Result 1 79 82 95 77	75-125 75-125 75-125 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Silver Tin Zinc Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene	M20-JI45662 M20-JI45662 M20-JI45662 M20-JI45662 M20-JI41662 S M20-JI41171 M20-JI41171 M20-JI41171 M20-JI41171 M20-JI41171	NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % %	109 111 113 109 Result 1 79 82 95 77 83	75-125 75-125 75-125 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Silver Tin Zinc Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene	M20-JI45662 M20-JI45662 M20-JI45662 M20-JI45662 M20-JI41171 M20-JI41171 M20-JI41171 M20-JI41171 M20-JI41171 M20-JI41171	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % % %	109 111 113 109 Result 1 79 82 95 77 83 83	75-125 75-125 75-125 75-125 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Silver Tin Zinc Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	M20-JI45662 M20-JI45662 M20-JI45662 M20-JI45662 M20-JI41171 M20-JI41171 M20-JI41171 M20-JI41171 M20-JI41171 M20-JI41171 M20-JI41171	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % % % % % % % % %	109 111 113 109 Result 1 79 82 95 77 83 83 70	75-125 75-125 75-125 75-125 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Silver Tin Zinc Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene	M20-JI45662 M20-JI45662 M20-JI45662 M20-JI45662 M20-JI41171 M20-JI41171 M20-JI41171 M20-JI41171 M20-JI41171 M20-JI41171	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % % %	109 111 113 109 Result 1 79 82 95 77 83 83	75-125 75-125 75-125 75-125 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Fluoranthene	M20-JI41171	NCP	%	77			70-130	Pass	
Fluorene	M20-JI41171	NCP	%	82			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M20-JI41171	NCP	%	73			70-130	Pass	
Naphthalene	M20-JI41171	NCP	%	78			70-130	Pass	
Phenanthrene	M20-JI41171	NCP	%	85			70-130	Pass	
Pyrene	M20-JI41171	NCP	%	78			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M20-JI46049	NCP	mg/kg	5.0	5.2	4.0	30%	Pass	
Barium	M20-JI46049	NCP	mg/kg	65	68	4.0	30%	Pass	
Beryllium	M20-JI46049	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Boron	M20-JI46049	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Cadmium	M20-JI46049	NCP	mg/kg	2.2	2.2	2.0	30%	Pass	
Chromium	M20-JI46049	NCP	mg/kg	8.5	8.8	4.0	30%	Pass	
Cobalt	M20-JI46049	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	M20-JI46049	NCP	mg/kg	30	31	4.0	30%	Pass	
Lead	M20-JI46049	NCP	mg/kg	250	260	4.0	30%	Pass	
Manganese	M20-JI46049	NCP	mg/kg	160	170	3.0	30%	Pass	
Mercury	M20-JI46049	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Molybdenum	M20-JI46049	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Nickel	M20-JI46049	NCP	mg/kg	10	11	5.0	30%	Pass	
Selenium	M20-JI46049	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Silver	M20-JI46049	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tin	M20-JI46049	NCP	mg/kg	28	29	4.0	30%	Pass	
Zinc	M20-JI46049	NCP	mg/kg	1700	1800	3.0	30%	Pass	
Duplicate			<u> </u>						
				Result 1	Result 2	RPD			
% Moisture	M20-JI45659	NCP	%	16	15	8.0	30%	Pass	
Duplicate		,							
Polycyclic Aromatic Hydrocarbons	·			Result 1	Result 2	RPD			
Acenaphthene	M20-JI41168	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M20-JI41168	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M20-JI41168	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M20-JI41168	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M20-JI41168	NCP	mg/kg	0.7	0.7	3.0	30%	Pass	
Benzo(b&j)fluoranthene	M20-JI41168	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M20-JI41168	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M20-JI41168	NCP	mg/kg	0.7	0.6	14	30%	Pass	
Chrysene	M20-JI41168	NCP	mg/kg	< 0.5	0.5	9.0	30%	Pass	
Dibenz(a.h)anthracene	M20-JI41168	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M20-JI41168	NCP	mg/kg	0.7	0.9	20	30%	Pass	
Fluorene	M20-JI41168	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M20-JI41168	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M20-JI41168	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M20-JI41168	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M20-JI41168	NCP	mg/kg	0.8	1.0	21	30%	Pass	

Report Number: 734380-S

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.

Q08

Authorised By

Savini Suduweli Analytical Services Manager Emily Rosenberg Senior Analyst-Metal (VIC) Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 734380-S

JECT: ELWOOD				5	Signa Samp Samp	ature pler's e:	: s	(, Oʻ			47		N.	B	w	/					
No: 1865B			DATE				<u></u>	_			17:	LYSI	S	-	_	Т	1	1		IPOSI	
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				-	MPL TRI						FC			-			1	T	IN81	RUCT	RI
SAMPLE NO.	E	ITE			21		R20 - NEPM SCREEN	TALS SUITE			AGGRESSIVITY SUITE	12			r LAB		TAINERS	HIGH CONTAM EXPECTED	· ·	中	/
	DISCRETE	COMPOSITE	GRAB	SOIL	WATER	BLANK /	320 - NE	M17 - METALS	PAHS	TRHS	L2- AGG	pH - CaCl2	C.E.C.		HOLD AT LAB		NO, of CONTAINERS	HIGH CON		ź	2
ODUTA 40720A	X	۲	ř	X	-	-		-	4.1	Х							1			/ .	
SPLIT140720A SPLIT140720B	Î	1		X			1		Х	Х	10	ĪĦ				_6	1		l.	1	
SPLIT140720B	×		E	x	1			51	Х	11		11.5		-			1	\vdash			C.
SPLIT140720C SPLIT140720D	1x	-		X				X					V.,	-		(F	1			1	
SPLIT140720E	1 X	_		X		1		X		15				-	1		1	-		-	_
													C	eceiv/note	Tela	Elbo World	W A	e 20	12 12	544	
					-	4	2	+	2	2	2	+	4	4	+	+	1			.~	
TOTAL:	ign	7	3	-	-1		DATE	/TIME)	_			IVE	BY:	(sign)	_					(DA
DISPATCHED BY: (s COURIERED BY: (s) EUROFINS				_			(DATE)			NAME			Ma	<u> </u>	11				
			NA MA	TIME!	_	241	50	-	-	48H	16	-		3-4	DAYS	3				MAL	
INITIAL RESULTS F	EQUE	DIE	J VVI I	CHIA:		plote	d CC	C S	amp	le R	ceip	t Not	ificat	ion,	esulte	s an	d inv	voice	es to		

NOTE: A Must be completed by Atma Environmental
veliq: Zee E.f. 20/7 6:27am.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EM2012544

Client : ATMA ENVIRONMENTAL P/L Laboratory : Environmental Division Melbourne

Contact : MR GLEN BERRY Contact : Customer Services EM

Address : 56 William Street Address : 4 Westall Rd Springvale VIC Australia

3171

 Telephone
 : +61 94296955
 Telephone
 : +61-3-8549 9600

 Facsimile
 : +61 94295911
 Facsimile
 : +61-3-8549 9626

Project : ELWOOD Page : 1 of 2

ABBOTSFORD VIC, AUSTRALIA 3067

Order number : ---- Quote number : EM2015ATMENV0001 (EN/333

Seconday work only)

C-O-C number : ---- QC Level : NEPM 2013 B3 & ALS QC Standard

Site : 1865B Sampler : KO

Dates

Date Samples Received : 20-Jul-2020 10:00 Issue Date : 21-Jul-2020 Client Requested Due : 27-Jul-2020 Scheduled Reporting Date : 27-Jul-2020

Date

Delivery Details

 Mode of Delivery
 : Carrier
 Security Seal
 : Not Available

 No. of coolers/boxes
 : 1
 Temperature
 : 4.3°C - Ice present

Receipt Detail : No. of samples received / analysed : 5 / 5

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Sample(s) received in non-ALS container(s).
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analytical work for this work order will be conducted at ALS Springvale.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date : 21-Jul-2020

Page

2 of 2 EM2012544 Amendment 0 Work Order Client : ATMA ENVIRONMENTAL P/L

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

process necessal tasks. Packages as the determinatasks, that are included in the sampling default 00:00 on is provided, the	ry for the executi may contain ad ation of moisture uded in the package. time is provided, the date of samplin	g. If no sampling date	EA055-103	- EG005T (solids) Metals by ICP-AES	- EP075 SIM PAH only PAH only	S-02 Is (incl. Digestion)	SOIL - S-07 RH/BTEXN/PAH (SIM)	- TPH only (C6 - C40)
Laboratory sample	Client sampling	Client sample ID	SOIL - E, Moisture	SOIL .	SOIL -	SOIL - S- 8 Metals	SOIL .	SOIL . TRH (
ID ENGLISH A COL	date / time	001174407004		Ø ⊢	Ø Ø	<u>ω</u> ∞	o ⊢	- T
EM2012544-001	14-Jul-2020 00:00	SPLIT140720A	✓					✓
EM2012544-002	14-Jul-2020 00:00	SPLIT140720B	1				✓	
EM2012544-003	14-Jul-2020 00:00	SPLIT140720C	1		✓			
EM2012544-004	14-Jul-2020 00:00	SPLIT140720D	1	✓		✓		
EM2012544-005	14-Jul-2020 00:00	SPLIT140720E	1	✓		✓		

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

GLEN BERRY

OLLIV BLINK!		
 *AU Certificate of Analysis - NATA (COA) 	Email	gberry@atmaenvironmental.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	gberry@atmaenvironmental.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	gberry@atmaenvironmental.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	gberry@atmaenvironmental.com
- A4 - AU Tax Invoice (INV)	Email	gberry@atmaenvironmental.com
- Chain of Custody (CoC) (COC)	Email	gberry@atmaenvironmental.com
- EDI Format - ENMRG (ENMRG)	Email	gberry@atmaenvironmental.com
- EDI Format - ESDAT (ESDAT)	Email	gberry@atmaenvironmental.com
INVOICES		
- A4 - AU Tax Invoice (INV)	Email	rmcphillips@atmaenvironmental.co
		m
		m
KYLE O'BRIEN		m
KYLE O'BRIEN - *AU Certificate of Analysis - NATA (COA)	Email	kobrien@atmaenvironmental.com
	Email Email	
- *AU Certificate of Analysis - NATA (COA)		kobrien@atmaenvironmental.com
- *AU Certificate of Analysis - NATA (COA) - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	kobrien@atmaenvironmental.com kobrien@atmaenvironmental.com
 *AU Certificate of Analysis - NATA (COA) *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email Email	kobrien@atmaenvironmental.com kobrien@atmaenvironmental.com kobrien@atmaenvironmental.com
 *AU Certificate of Analysis - NATA (COA) *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email Email Email	kobrien@atmaenvironmental.com kobrien@atmaenvironmental.com kobrien@atmaenvironmental.com kobrien@atmaenvironmental.com
 *AU Certificate of Analysis - NATA (COA) *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) A4 - AU Sample Receipt Notification - Environmental HT (SRN) A4 - AU Tax Invoice (INV) 	Email Email Email Email	kobrien@atmaenvironmental.com kobrien@atmaenvironmental.com kobrien@atmaenvironmental.com kobrien@atmaenvironmental.com kobrien@atmaenvironmental.com
 *AU Certificate of Analysis - NATA (COA) *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) A4 - AU Sample Receipt Notification - Environmental HT (SRN) A4 - AU Tax Invoice (INV) Chain of Custody (CoC) (COC) 	Email Email Email Email Email	kobrien@atmaenvironmental.com kobrien@atmaenvironmental.com kobrien@atmaenvironmental.com kobrien@atmaenvironmental.com kobrien@atmaenvironmental.com

CERTIFICATE OF ANALYSIS

Work Order : EM2012544

Client : ATMA ENVIRONMENTAL P/L

Contact : MR GLEN BERRY

Address : 56 William Street

ABBOTSFORD VIC, AUSTRALIA 3067

Telephone : +61 94296955
Project : ELWOOD

Order number : ----

C-O-C number : ---Sampler : KO
Site : 1865B

Quote number : EN/333 Seconday work only

No. of samples received : 5
No. of samples analysed : 5

Page : 1 of 6

Laboratory : Environmental Division Melbourne

Contact : Customer Services EM

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +61-3-8549 9600

Date Samples Received : 20-Jul-2020 10:00

Date Analysis Commenced : 22-Jul-2020

Issue Date : 24-Jul-2020 13:08

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Andrew Lu	VOC Section Supervisor	Melbourne Inorganics, Springvale, VIC
Dilani Fernando	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Organics, Springvale, VIC

Page : 2 of 6
Work Order : EM2012544

Client : ATMA ENVIRONMENTAL P/L

Project : ELWOOD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

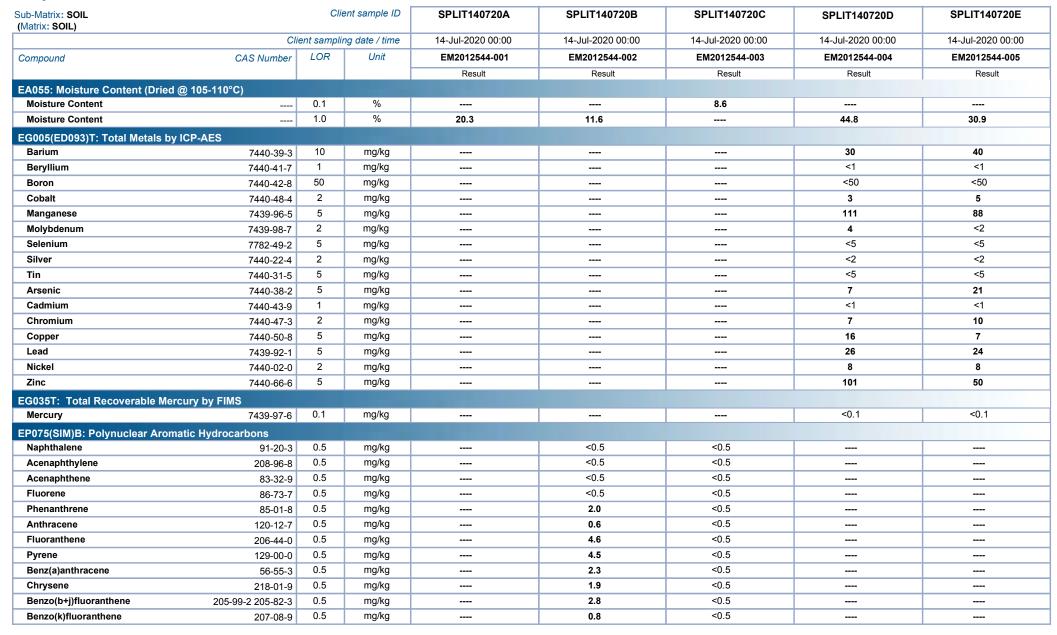
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

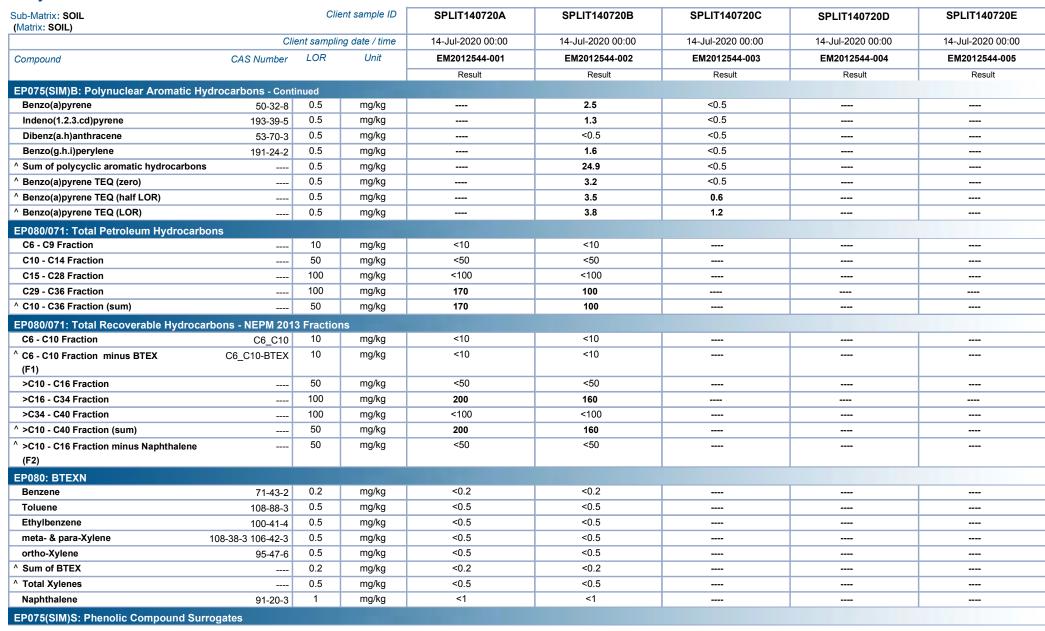
LOR = Limit of reporting


- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.

Page : 3 of 6
Work Order : EM2012544

Client : ATMA ENVIRONMENTAL P/L

Project : ELWOOD



Page : 4 of 6
Work Order : EM2012544

Client : ATMA ENVIRONMENTAL P/L

Project : ELWOOD

Page : 5 of 6
Work Order : EM2012544

Client : ATMA ENVIRONMENTAL P/L

Project : ELWOOD

Page : 6 of 6
Work Order : EM2012544

Client : ATMA ENVIRONMENTAL P/L

Project : ELWOOD

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	54	125
2-Chlorophenol-D4	93951-73-6	65	123
2.4.6-Tribromophenol	118-79-6	34	122
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	61	125
Anthracene-d10	1719-06-8	62	130
4-Terphenyl-d14	1718-51-0	67	133
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	51	125
Toluene-D8	2037-26-5	55	125
4-Bromofluorobenzene	460-00-4	56	124

QUALITY CONTROL REPORT

Work Order : **EM2012544**

Client : ATMA ENVIRONMENTAL P/L

Contact : MR GLEN BERRY

Address : 56 William Street

ABBOTSFORD VIC, AUSTRALIA 3067

Telephone : +61 94296955

Project : ELWOOD

Order number : ---C-O-C number : ----

Sampler : KO Site : 1865B

Quote number : EN/333 Seconday work only

No. of samples received : 5
No. of samples analysed : 5

Page : 1 of 9

Laboratory : Environmental Division Melbourne

Contact : Customer Services EM

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +61-3-8549 9600

Date Samples Received : 20-Jul-2020
Date Analysis Commenced : 22-Jul-2020

Issue Date : 24-Jul-2020

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Andrew Lu	VOC Section Supervisor	Melbourne Inorganics, Springvale, VIC
Dilani Fernando	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Organics, Springvale, VIC

Page : 2 of 9 Work Order : EM2012544

Client : ATMA ENVIRONMENTAL P/L

Project : ELWOOD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)T: To	tal Metals by ICP-AES(C	QC Lot: 3155474)							
EM2012544-005	SPLIT140720E	EG005T: Beryllium	7440-41-7	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Barium	7440-39-3	10	mg/kg	40	40	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	10	10	0.00	No Limit
		EG005T: Cobalt	7440-48-4	2	mg/kg	5	4	0.00	No Limit
		EG005T: Molybdenum	7439-98-7	2	mg/kg	<2	<2	0.00	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	8	7	0.00	No Limit
		EG005T: Silver	7440-22-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	21	20	9.15	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	7	8	17.4	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	24	25	5.26	No Limit
		EG005T: Manganese	7439-96-5	5	mg/kg	88	86	1.62	0% - 50%
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Tin	7440-31-5	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	50	57	12.9	0% - 50%
		EG005T: Boron	7440-42-8	50	mg/kg	<50	<50	0.00	No Limit
EM2012548-012	Anonymous	EG005T: Beryllium	7440-41-7	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Barium	7440-39-3	10	mg/kg	160	150	0.00	0% - 50%
		EG005T: Chromium	7440-47-3	2	mg/kg	23	20	16.5	0% - 50%
		EG005T: Cobalt	7440-48-4	2	mg/kg	17	19	10.3	No Limit
		EG005T: Molybdenum	7439-98-7	2	mg/kg	<2	<2	0.00	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	64	75	14.9	0% - 20%
		EG005T: Silver	7440-22-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	7	7	0.00	No Limit

Page : 3 of 9
Work Order : EM2012544

Client : ATMA ENVIRONMENTAL P/L

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report	•	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)T: Tot	tal Metals by ICP-AES(QC Lot: 3155474) - continued							
EM2012548-012	Anonymous	EG005T: Copper	7440-50-8	5	mg/kg	70	81	14.9	0% - 50%
		EG005T: Lead	7439-92-1	5	mg/kg	186	170	8.66	0% - 20%
		EG005T: Manganese	7439-96-5	5	mg/kg	616	592	4.14	0% - 20%
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Tin	7440-31-5	5	mg/kg	10	9	0.00	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	368	332	10.1	0% - 20%
		EG005T: Boron	7440-42-8	50	mg/kg	<50	<50	0.00	No Limit
EA055: Moisture Co	ntent (Dried @ 105-110°	°C) (QC Lot: 3154320)							
EM2012525-003	Anonymous	EA055: Moisture Content		0.1	%	26.6	25.0	6.19	0% - 20%
EM2012544-003	SPLIT140720C	EA055: Moisture Content		0.1	%	8.6	8.5	2.02	0% - 20%
EG035T: Total Reco	overable Mercury by FIN	MS (QC Lot: 3155472)							
EM2012443-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EM2012481-008	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EG035T: Total Reco	overable Mercury by FIN	MS (QC Lot: 3155475)							
EM2012544-005	SPLIT140720E	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EM2012548-012	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.3	0.3	0.00	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hydrod	carbons (QC Lot: 3152725)							
EM2012456-003	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	_	EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EM2012548-003	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	0.7	0.5	26.1	No Limit

Page : 4 of 9 Work Order : EM2012544

Client : ATMA ENVIRONMENTAL P/L

ub-Matrix: SOIL									
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
P075(SIM)B: Polyr	nuclear Aromatic Hydro	carbons (QC Lot: 3152725) - continued							
EM2012548-003	Anonymous	EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	2.1	1.5	31.1	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	2.3	1.7	29.4	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	1.4	1.0	29.1	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	1.1	0.9	24.1	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	1.9	1.5	22.8	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	1.6	1.2	25.1	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	0.9	0.7	21.1	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	1.1	0.9	19.3	No Limit
P075(SIM)B: Polyr	nuclear Aromatic Hydro	carbons (QC Lot: 3152758)							
M2012371-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	6.0	6.9	12.6	0% - 50%
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	3.3	3.6	9.31	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	0.8	0.9	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	2.3	2.5	8.58	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	15.0	15.6	3.33	0% - 20%
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	4.4	4.6	3.65	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	14.0	15.3	9.29	0% - 20%
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	14.3	15.5	7.68	0% - 20%
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	6.2	6.9	10.9	0% - 50%
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	5.0	5.4	8.76	0% - 50%
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	6.5	6.6	0.00	0% - 50%
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	1.9	2.8	38.8	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	5.9	6.5	9.32	0% - 50%
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	2.6	2.9	11.7	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	0.8	0.9	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	3.3	3.6	10.0	No Limit
P080/071: Total Pe	etroleum Hydrocarbons	(QC Lot: 3152759)							
M2012441-007	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
M2012371-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	300	340	11.9	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	140	150	9.56	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	440	490	10.8	No Limit

Page : 5 of 9
Work Order : EM2012544

Client : ATMA ENVIRONMENTAL P/L

Sub-Matrix: SOIL						Laboratory L	Ouplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 3153242) - continued							
EM2012439-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EM2012500-012	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total Re	coverable Hydrocarbon	s - NEPM 2013 Fractions (QC Lot: 3152759)							
EM2012441-007	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
EM2012371-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	380	430	11.6	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	380	430	12.3	No Limit
EP080/071: Total Re	coverable Hydrocarbon	s - NEPM 2013 Fractions (QC Lot: 3153242)							
EM2012439-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
EM2012500-012	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
EP080: BTEXN (QC	Lot: 3153242)								
EM2012439-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
EM2012500-012	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit

Page : 6 of 9 Work Order : EM2012544

Client : ATMA ENVIRONMENTAL P/L

Project : ELWOOD

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)T: Total Metals by ICP-AES (QCLot:	3155474)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	106	78.5	107
EG005T: Barium	7440-39-3	10	mg/kg	<10	143 mg/kg	103	76.4	110
EG005T: Beryllium	7440-41-7	1	mg/kg	<1	5.63 mg/kg	112	85.4	114
EG005T: Boron	7440-42-8	50	mg/kg	<50	33.2 mg/kg	123	84.4	126
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	98.2	76.2	108
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	92.0	77.7	110
EG005T: Cobalt	7440-48-4	2	mg/kg	<2	16 mg/kg	98.1	78.1	112
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	99.5	78.1	108
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	97.1	78.4	106
EG005T: Manganese	7439-96-5	5	mg/kg	<5	130 mg/kg	104	80.6	110
EG005T: Molybdenum	7439-98-7	2	mg/kg	<2	7.9 mg/kg	94.4	78.0	114
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	101	79.9	109
EG005T: Selenium	7782-49-2	5	mg/kg	<5	5.37 mg/kg	103	92.0	110
EG005T: Silver	7440-22-4	2	mg/kg	<2	2.1 mg/kg	88.5	80.0	108
EG005T: Tin	7440-31-5	5	mg/kg	<5	5.2 mg/kg	87.6	78.4	117
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	99.7	79.1	110
EG035T: Total Recoverable Mercury by FIMS (QC	Lot: 3155472)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	105	76.9	110
EG035T: Total Recoverable Mercury by FIMS (QC	Lot: 3155475)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	102	76.9	110
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 3152725)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	3 mg/kg	105	84.6	128
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	3 mg/kg	106	76.9	127
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	3 mg/kg	103	85.3	128
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	3 mg/kg	100	82.1	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	3 mg/kg	103	85.4	133
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	3 mg/kg	107	88.7	136
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	3 mg/kg	104	83.4	136
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	3 mg/kg	105	85.1	140
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	3 mg/kg	104	80.7	130
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	3 mg/kg	106	85.2	141
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	3 mg/kg	90.5	68.5	120
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	3 mg/kg	107	80.1	132

Page : 7 of 9
Work Order : EM2012544

Client : ATMA ENVIRONMENTAL P/L

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 3152725) - co	ntinued						
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	3 mg/kg	100	67.4	120
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	3 mg/kg	96.0	66.0	126
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	3 mg/kg	94.6	65.4	127
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	3 mg/kg	97.3	67.8	127
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 3152758)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	3 mg/kg	99.2	84.6	128
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	3 mg/kg	99.3	76.9	127
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	3 mg/kg	98.8	85.3	128
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	3 mg/kg	96.9	82.1	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	3 mg/kg	100	85.4	133
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	3 mg/kg	105	88.7	136
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	3 mg/kg	101	83.4	136
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	3 mg/kg	103	85.1	140
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	3 mg/kg	98.8	80.7	130
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	3 mg/kg	105	85.2	141
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	3 mg/kg	91.2	68.5	120
	205-82-3							
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	3 mg/kg	103	80.1	132
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	3 mg/kg	98.5	67.4	120
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	3 mg/kg	99.4	66.0	126
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	3 mg/kg	96.9	65.4	127
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	3 mg/kg	103	67.8	127
EP080/071: Total Petroleum Hydrocarbons (QCLot:	3152759)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	900 mg/kg	81.6	71.8	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	3030 mg/kg	90.3	83.9	125
EP071: C29 - C36 Fraction		100	mg/kg	<100	1520 mg/kg	94.3	77.9	119
EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50				
EP080/071: Total Petroleum Hydrocarbons (QCLot:	3153242)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	36 mg/kg	96.6	61.2	127
EP080/071: Total Recoverable Hydrocarbons - NEP	M 2013 Fractions (QCL	ot: 3152759)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	1160 mg/kg	89.5	72.2	128
EP071: >C16 - C34 Fraction		100	mg/kg	<100	4020 mg/kg	89.5	82.1	122
EP071: >C34 - C40 Fraction		100	mg/kg	<100	280 mg/kg	90.0	55.1	131
EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50				
EP080/071: Total Recoverable Hydrocarbons - NEP	M 2013 Fractions (QCL	ot: 3153242)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	45 mg/kg	94.7	59.5	125
EP080: BTEXN (QCLot: 3153242)								
EP080: Brizane	71-43-2	0.2	mg/kg	<0.2	2 mg/kg	94.5	62.7	119
LI GGG. BGILEGIIG					55	22		

Page : 8 of 9 Work Order : EM2012544

Client : ATMA ENVIRONMENTAL P/L

Project : ELWOOD

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080: BTEXN (QCLot: 3153242) - continued								
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	2 mg/kg	94.6	66.6	126
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	2 mg/kg	93.2	66.3	124
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	4 mg/kg	102	67.5	128
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	2 mg/kg	102	73.0	128
EP080: Naphthalene	91-20-3	1	mg/kg	<1	0.5 mg/kg	96.2	61.2	123

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 3155474)						
EM2012548-001	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	94.3	78.0	124
		EG005T: Cadmium	7440-43-9	50 mg/kg	93.0	84.0	116
		EG005T: Chromium	7440-47-3	50 mg/kg	90.4	79.0	121
		EG005T: Copper	7440-50-8	250 mg/kg	96.2	80.0	120
		EG005T: Lead	7439-92-1	250 mg/kg	85.1	80.0	120
		EG005T: Nickel	7440-02-0	50 mg/kg	82.0	78.0	120
		EG005T: Zinc	7440-66-6	250 mg/kg	99.6	80.0	120
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 3155472)						
EM2012443-002	Anonymous	EG035T: Mercury	7439-97-6	0.5 mg/kg	105	76.0	116
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 3155475)						
EM2012548-001	Anonymous	EG035T: Mercury	7439-97-6	0.5 mg/kg	109	76.0	116
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 31527	25)					
EM2012548-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	3 mg/kg	100.0	67.0	117
		EP075(SIM): Pyrene	129-00-0	3 mg/kg	# Not	52.0	148
					Determined		
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 31527	58)					
EM2012371-004	Anonymous	EP075(SIM): Acenaphthene	83-32-9	3 mg/kg	96.0	67.0	117
		EP075(SIM): Pyrene	129-00-0	3 mg/kg	81.1	52.0	148
EP080/071: Total F	etroleum Hydrocarbons (QCLot: 3152759)						
EM2012371-003	Anonymous	EP071: C10 - C14 Fraction		900 mg/kg	85.1	53.0	123
		EP071: C15 - C28 Fraction		3030 mg/kg	96.1	70.0	124
		EP071: C29 - C36 Fraction		1520 mg/kg	102	64.0	118

Page : 9 of 9 Work Order : EM2012544

Client : ATMA ENVIRONMENTAL P/L

Sub-Matrix: SOIL				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total l	Petroleum Hydrocarbons (QCLot: 3153242)						
EM2012471-008	Anonymous	EP080: C6 - C9 Fraction		28 mg/kg	94.0	42.0	131
EP080/071: Total	Recoverable Hydrocarbons - NEPM 2013 Fractions (QC	Lot: 3152759)					
EM2012371-003	Anonymous	EP071: >C10 - C16 Fraction -		1160 mg/kg	93.4	65.0	123
		EP071: >C16 - C34 Fraction -		4020 mg/kg	96.2	67.0	121
		EP071: >C34 - C40 Fraction -		280 mg/kg	96.9	44.0	126
EP080/071: Total l	Recoverable Hydrocarbons - NEPM 2013 Fractions (QC	Lot: 3153242)					
EM2012471-008	Anonymous	EP080: C6 - C10 Fraction	C6_C10	33 mg/kg	89.3	39.0	129
EP080: BTEXN (C	QCLot: 3153242)						
EM2012471-008	Anonymous	EP080: Benzene	71-43-2	2 mg/kg	106	50.0	136
		EP080: Toluene	108-88-3	2 mg/kg	104	56.0	139

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EM2012544** Page : 1 of 4

Client : ATMA ENVIRONMENTAL P/L Laboratory : Environmental Division Melbourne

 Contact
 : MR GLEN BERRY
 Telephone
 : +61-3-8549 9600

 Project
 : ELWOOD
 Date Samples Received
 : 20-Jul-2020

 Site
 : 1865B
 Issue Date
 : 24-Jul-2020

Sampler : KO No. of samples received : 5
Order number No. of samples analysed : 5

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4
Work Order : EM2012544

Client : ATMA ENVIRONMENTAL P/L

Project : ELWOOD

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data		Limits	Comment
Matrix Spike (MS) Recoveries								
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	EM2012548001	Anonymous	Pyrene	129-00-0	Not			MS recovery not determined,
					Determined	t		background level greater than or
								equal to 4x spike level.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL Evaluation: ★ = Holding time breach; ✓ = Within holding time.

Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)								
Soil Glass Jar - Unpreserved (EA055) SPLIT140720A, SPLIT140720C, SPLIT140720E	SPLIT140720B, SPLIT140720D,	14-Jul-2020				22-Jul-2020	28-Jul-2020	✓
EG005(ED093)T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved (EG005T) SPLIT140720D,	SPLIT140720E	14-Jul-2020	23-Jul-2020	10-Jan-2021	✓	23-Jul-2020	10-Jan-2021	✓
EG035T: Total Recoverable Mercury by FIMS								
Soil Glass Jar - Unpreserved (EG035T) SPLIT140720D,	SPLIT140720E	14-Jul-2020	23-Jul-2020	11-Aug-2020	✓	23-Jul-2020	11-Aug-2020	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbon:	s							
Soil Glass Jar - Unpreserved (EP075(SIM)) SPLIT140720B,	SPLIT140720C	14-Jul-2020	22-Jul-2020	28-Jul-2020	✓	22-Jul-2020	31-Aug-2020	✓
EP080/071: Total Petroleum Hydrocarbons								
Soil Glass Jar - Unpreserved (EP080) SPLIT140720A,	SPLIT140720B	14-Jul-2020	22-Jul-2020	28-Jul-2020	✓	22-Jul-2020	28-Jul-2020	✓
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP080) SPLIT140720A,	SPLIT140720B	14-Jul-2020	22-Jul-2020	28-Jul-2020	✓	22-Jul-2020	28-Jul-2020	✓
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080) SPLIT140720A,	SPLIT140720B	14-Jul-2020	22-Jul-2020	28-Jul-2020	✓	22-Jul-2020	28-Jul-2020	√

Page : 3 of 4 Work Order EM2012544

Client ATMA ENVIRONMENTAL P/L

Project **ELWOOD**

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	3	28	10.71	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	4	32	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)		11.43					
PAH/Phenols (SIM)	EP075(SIM)	2	28	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	32	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	2	28	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	32	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	2	28	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	32	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 4 of 4 Work Order : EM2012544

Client : ATMA ENVIRONMENTAL P/L

Project : ELWOOD

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 6.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM amended 2013.
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270E. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260D. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM amended 2013.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

PROJECT: Elwood			DAT	E: 7	23/	aturi pler e:	e: s,	le)	0.6	Time		LYSI	C				- 1		COMPOSITING
SAMPLE NO.					MPL						FC			~		· N	1		INSTRUCTIONS
SPIL1-230720	DISCRETE	COMPOSITE	GRAB	SOIL	WATER	BLANK /	53	大 数 54	(P)和		1	ונ	3	٥			NO. of CONTAINERS	HIGH CONTAM EXPECTED	
SPIL1-230720					<u>X</u>		X	×	^										
	a (E.	1												u.	TT.	
							1			- 4					= 1	-		77/	
							1										Mel	bot	nmental Division Irne Order Reference 1201298
															Ė				
	F						F												传入的
							F						Ē		E				+ 61-3-8549 9800
											1						t		-
												C	note	od:		1	1	C:	rier:
				E		L						Te	17	lgebr	ricks	_	-	*	2
TOTAL: DISPATCHED BY: (sign)		_	1	1		(DA	TE/TI	VE)	•	RE	CEIV	ED B	Y: (si	ign)			1	-	(DATE/TIM
△ COURIERED BY: (sign)						(DA	TEATI	ME)		LA	3 NA	ME:	H	H	5	Ne	124	u	
INITIAL RESULTS REQU	EST	ED V	/ITHI	N:	24	Hrs	200		48	Hrs	nt N	otific		4 D/		and i	וחעחו		ORMAL to:

Must be completed with date and time by laboratory.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EM2012989

Client : ATMA ENVIRONMENTAL P/L Laboratory : Environmental Division Melbourne

Contact : MR RORY McPHILLIPS Contact : Customer Services EM

Address : 56 William Street Address : 4 Westall Rd Springvale VIC Australia

3171

E-mail : rmcphillips@atmaenvironmental.co : ALSEnviro.Melbourne@alsglobal.com

m

 Telephone
 : +61 94296955
 Telephone
 : +61-3-8549 9600

 Facsimile
 : +61 03 94295911
 Facsimile
 : +61-3-8549 9626

Project : ELWOOD Page : 1 of 2

ABBOTSFORD VIC, AUSTRALIA 3067

Order number : ---- Quote number : EM2015ATMENV0001 (EN/333

Seconday work only)

C-O-C number : ---- QC Level : NEPM 2013 B3 & ALS QC Standard

Site : 1865B Sampler : KO

Dates

Date Samples Received : 27-Jul-2020 09:15 Issue Date : 27-Jul-2020 Client Requested Due : 29-Jul-2020 Scheduled Reporting Date : 29-Jul-2020

Date

Delivery Details

 Mode of Delivery
 : Carrier
 Security Seal
 : Not Available

 No. of coolers/boxes
 : 1
 Temperature
 : 3.1°C - Ice present

Receipt Detail : No. of samples received / analysed : 1 / 1

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Sample received in non-ALS container(s).
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analytical work for this work order will be conducted at ALS Springvale.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date : 27-Jul-2020

Page : 2 of 2

EM2012989 Amendment 0 Work Order Client : ATMA ENVIRONMENTAL P/L

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the 15 Metals (NEPM Suite) laboratory and displayed in brackets without a time component WATER - W-07 TRH/BTEXN/PAH **VATER - W-03** Matrix: WATER Client sample ID Laboratory sample Client sampling ID date / time SPLIT_230720 EM2012989-001 23-Jul-2020 00:00

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

INVOICES

- A4 - AU Tax Invoice (INV)	Email	rmcphillips@atmaenvironmental.co m
KYLE O'BRIEN		
- *AU Certificate of Analysis - NATA (COA)	Email	kobrien@atmaenvironmental.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	kobrien@atmaenvironmental.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	kobrien@atmaenvironmental.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	kobrien@atmaenvironmental.com
- A4 - AU Tax Invoice (INV)	Email	kobrien@atmaenvironmental.com
- Chain of Custody (CoC) (COC)	Email	kobrien@atmaenvironmental.com
- EDI Format - ENMRG (ENMRG)	Email	kobrien@atmaenvironmental.com
- EDI Format - ESDAT (ESDAT)	Email	kobrien@atmaenvironmental.com
RORY McPHILLIPS		
- *AU Certificate of Analysis - NATA (COA)	Email	rmcphillips@atmaenvironmental.co
		m
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	rmcphillips@atmaenvironmental.co
		m
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	rmcphillips@atmaenvironmental.co
		m
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	rmcphillips@atmaenvironmental.co
		m
- A4 - AU Tax Invoice (INV)	Email	rmcphillips@atmaenvironmental.co
		m
- Chain of Custody (CoC) (COC)	Email	rmcphillips@atmaenvironmental.co
		m
- EDI Format - ENMRG (ENMRG)	Email	rmcphillips@atmaenvironmental.co
		m
- EDI Format - ESDAT (ESDAT)	Email	rmcphillips@atmaenvironmental.co
		m

CERTIFICATE OF ANALYSIS

Work Order : EM2012989

: ATMA ENVIRONMENTAL P/L

Contact : MR RORY McPHILLIPS

Address : 56 William Street

ABBOTSFORD VIC, AUSTRALIA 3067

Telephone : +61 94296955 **Project** : ELWOOD

Order number

Client

C-O-C number Sampler : KO Site : 1865B

Quote number : EN/333 Seconday work only

No. of samples received : 1 No. of samples analysed : 1 Page : 1 of 6

> Laboratory : Environmental Division Melbourne

Contact : Customer Services EM

Address : 4 Westall Rd Springvale VIC Australia 3171

: 27-Jul-2020 09:15

Telephone : +61-3-8549 9600 **Date Samples Received**

Date Analysis Commenced : 27-Jul-2020

Issue Date : 29-Jul-2020 18:40

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dilani Fernando Senior Inorganic Chemist Melbourne Inorganics, Springvale, VIC Senior Organic Chemist Melbourne Organics, Springvale, VIC Xing Lin

Page : 2 of 6 Work Order : EM2012989

Client : ATMA ENVIRONMENTAL P/L

Project : ELWOOD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.

Page : 3 of 6
Work Order : EM2012989

Client : ATMA ENVIRONMENTAL P/L

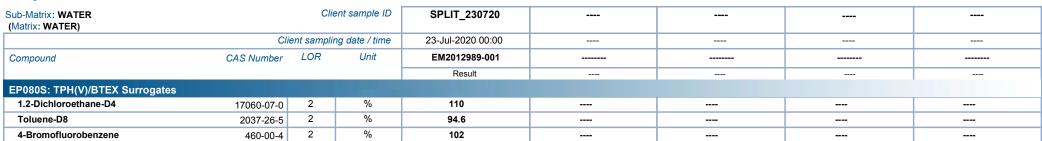
Project : ELWOOD

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	SPLIT_230720	 	
,	Ci	lient samplii	ng date / time	23-Jul-2020 00:00	 	
Compound	CAS Number	LOR	Unit	EM2012989-001	 	
				Result	 	
EG020F: Dissolved Metals by IC	CP-MS					
Arsenic	7440-38-2	0.001	mg/L	0.007	 	
Boron	7440-42-8	0.05	mg/L	0.93	 	
Barium	7440-39-3	0.001	mg/L	0.073	 	
Beryllium	7440-41-7	0.001	mg/L	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Cobalt	7440-48-4	0.001	mg/L	<0.001	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	 	
Copper	7440-50-8	0.001	mg/L	0.008	 	
Manganese	7439-96-5	0.001	mg/L	0.010	 	
Nickel	7440-02-0	0.001	mg/L	0.037	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Selenium	7782-49-2	0.01	mg/L	<0.01	 	
Vanadium	7440-62-2	0.01	mg/L	<0.01	 	
Zinc	7440-66-6	0.005	mg/L	0.014	 	
EG035F: Dissolved Mercury by	FIMS					
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EP075(SIM)B: Polynuclear Aron						
Naphthalene	91-20-3	1.0	μg/L	<1.0	 	
Acenaphthylene	208-96-8	1.0	μg/L	<1.0	 	
Acenaphthene	83-32-9	1.0	μg/L	<1.0	 	
Fluorene	86-73-7	1.0	μg/L	<1.0	 	
Phenanthrene	85-01-8	1.0	μg/L	<1.0	 	
Anthracene	120-12-7	1.0	μg/L	<1.0	 	
Fluoranthene	206-44-0	1.0	μg/L	<1.0	 	
Pyrene	129-00-0	1.0	μg/L	<1.0	 	
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0	 	
Chrysene	218-01-9	1.0	μg/L	<1.0	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	μg/L	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	μg/L	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L	<1.0	 	
Sum of polycyclic aromatic hydro		0.5	μg/L	<0.5	 	
cam of polybyone aromatic flydre		0.0	P9′ -	-0.0	 	

Page : 4 of 6
Work Order : EM2012989

Client : ATMA ENVIRONMENTAL P/L

Project : ELWOOD



Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	SPLIT_230720	 	
	Cli	ient samplii	ng date / time	23-Jul-2020 00:00	 	
Compound	CAS Number	LOR	Unit	EM2012989-001	 	
Compound	or to realison			Result	 	
EP075(SIM)B: Polynuclear Aromatic H	vdrocarbons - Cont	inued				
^ Benzo(a)pyrene TEQ (zero)		0.5	μg/L	<0.5	 	
EP080/071: Total Petroleum Hydrocark	oons					
C6 - C9 Fraction		20	μg/L	<20	 	
C10 - C14 Fraction		50	μg/L	<50	 	
C15 - C28 Fraction		100	μg/L	<100	 	
C29 - C36 Fraction		50	μg/L	<50	 	
^ C10 - C36 Fraction (sum)		50	μg/L	<50	 	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fraction	ns			
C6 - C10 Fraction	C6_C10		μg/L	<20	 	
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	20	μg/L	<20	 	
>C10 - C16 Fraction		100	μg/L	<100	 	
>C16 - C34 Fraction		100	μg/L	<100	 	
>C34 - C40 Fraction		100	μg/L	<100	 	
^ >C10 - C40 Fraction (sum)		100	μg/L	<100	 	
^ >C10 - C16 Fraction minus Naphthalene		100	μg/L	<100	 	
(F2)						
EP080: BTEXN						
Benzene	71-43-2	1	μg/L	<1	 	
Toluene	108-88-3	2	μg/L	<2	 	
Ethylbenzene	100-41-4	2	μg/L	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	 	
ortho-Xylene	95-47-6	2	μg/L	<2	 	
^ Total Xylenes		2	μg/L	<2	 	
^ Sum of BTEX		1	μg/L	<1	 	
Naphthalene	91-20-3	5	μg/L	<5	 	
EP075(SIM)S: Phenolic Compound Su	rrogates					
Phenol-d6	13127-88-3	1.0	%	10.5	 	
2-Chlorophenol-D4	93951-73-6	1.0	%	49.2	 	
2.4.6-Tribromophenol	118-79-6	1.0	%	45.7	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	1.0	%	46.2	 	
Anthracene-d10	1719-06-8	1.0	%	52.8	 	
4-Terphenyl-d14	1718-51-0	1.0	%	51.6	 	

Page : 5 of 6 Work Order : EM2012989

Client : ATMA ENVIRONMENTAL P/L

Project : ELWOOD

Page : 6 of 6 Work Order : EM2012989

Client : ATMA ENVIRONMENTAL P/L

Project : ELWOOD

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	10	46
2-Chlorophenol-D4	93951-73-6	23	104
2.4.6-Tribromophenol	118-79-6	28	130
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	36	114
Anthracene-d10	1719-06-8	51	119
4-Terphenyl-d14	1718-51-0	49	127
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	129
Toluene-D8	2037-26-5	70	125
4-Bromofluorobenzene	460-00-4	71	129

QUALITY CONTROL REPORT

Work Order : EM2012989

: ATMA ENVIRONMENTAL P/L

Contact : MR RORY McPHILLIPS

Address : 56 William Street

ABBOTSFORD VIC, AUSTRALIA 3067

Telephone : +61 94296955

Project : ELWOOD

Order number : ---C-O-C number : ----

Sampler : KO Site : 1865B

Quote number : EN/333 Seconday work only

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 6

Laboratory : Environmental Division Melbourne

Contact : Customer Services EM

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +61-3-8549 9600

Date Samples Received : 27-Jul-2020
Date Analysis Commenced : 27-Jul-2020

Issue Date : 29-Jul-2020

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Client

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dilani Fernando Senior Inorganic Chemist Melbourne Inorganics, Springvale, VIC
Xing Lin Senior Organic Chemist Melbourne Organics, Springvale, VIC

Page : 2 of 6 Work Order : EM2012989

Client : ATMA ENVIRONMENTAL P/L

Project : ELWOOD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EG020F: Dissolved	Metals by ICP-MS (QC L	ot: 3164410)									
EM2012871-014	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit		
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.002	0.002	0.00	No Limit		
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit		
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.068	0.073	8.18	0% - 20%		
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit		
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	0.002	0.003	0.00	No Limit		
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.003	0.003	0.00	No Limit		
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit		
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.011	0.014	24.8	0% - 50%		
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.013	0.019	36.4	0% - 50%		
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.006	0.012	68.3	No Limit		
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit		
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit		
		EG020A-F: Boron	7440-42-8	0.05	mg/L	0.17	0.19	8.79	No Limit		
EM2012939-007	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit		
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.828	0.924	11.0	0% - 20%		
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit		
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.040	0.043	8.49	0% - 20%		
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit		
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	0.046	0.052	12.0	0% - 20%		
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit		
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.001	0.00	No Limit		
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	2.13	2.40	12.1	0% - 20%		
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.105	0.119	12.3	0% - 20%		
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.039	0.045	13.1	No Limit		

Page : 3 of 6 Work Order : EM2012989

Client : ATMA ENVIRONMENTAL P/L

Sub-Matrix: WATER						Laboratory L	Ouplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020F: Dissolved	Metals by ICP-MS (QC	C Lot: 3164410) - continued							
EM2012939-007	Anonymous	EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Boron	7440-42-8	0.05	mg/L	0.10	0.09	0.00	No Limit
EG035F: Dissolved	Mercury by FIMS (QC	Lot: 3164409)							
EM2012871-014	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EP080/071: Total Pe	troleum Hydrocarbon	s (QC Lot: 3164388)							
EM2012804-021	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.00	No Limit
EM2012973-024	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	40	40	0.00	No Limit
EP080/071: Total Re	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 3164388)							
EM2012804-021	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.00	No Limit
EM2012973-024	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	30	30	0.00	No Limit
EP080: BTEXN (QC	Lot: 3164388)								
EM2012804-021	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.00	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.00	No Limit
EM2012973-024	Anonymous	EP080: Benzene	71-43-2	1	μg/L	5	5	0.00	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	3	2	41.6	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.00	No Limit

Page : 4 of 6 Work Order : EM2012989

Client : ATMA ENVIRONMENTAL P/L

Project : ELWOOD

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020F: Dissolved Metals by ICP-MS (QCLot: 3164410)								
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	102	88.5	108
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	106	81.6	109
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	98.8	83.6	109
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	94.6	83.5	108
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	97.4	83.2	105
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	99.6	84.3	108
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	97.7	83.1	106
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	99.0	84.6	107
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	99.8	84.8	107
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	101	84.3	108
EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	97.2	82.3	110
EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	97.6	83.7	106
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	101	86.3	111
EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	103	85.4	113
EG035F: Dissolved Mercury by FIMS (QCLot: 3164409)								
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	93.3	71.1	112
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLo	ot: 3163691)							
EP075(SIM): Naphthalene	91-20-3	1	μg/L	<1.0	5 μg/L	68.2	41.1	116
EP075(SIM): Acenaphthylene	208-96-8	1	μg/L	<1.0	5 μg/L	73.8	47.2	121
EP075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	5 μg/L	73.2	47.3	118
EP075(SIM): Fluorene	86-73-7	1	μg/L	<1.0	5 μg/L	75.6	49.4	121
EP075(SIM): Phenanthrene	85-01-8	1	μg/L	<1.0	5 μg/L	77.3	52.5	124
EP075(SIM): Anthracene	120-12-7	1	μg/L	<1.0	5 μg/L	76.8	52.3	125
EP075(SIM): Fluoranthene	206-44-0	1	μg/L	<1.0	5 μg/L	77.6	52.4	127
EP075(SIM): Pyrene	129-00-0	1	μg/L	<1.0	5 μg/L	76.4	51.3	130
EP075(SIM): Benz(a)anthracene	56-55-3	1	μg/L	<1.0	5 μg/L	78.9	50.0	130
EP075(SIM): Chrysene	218-01-9	1	μg/L	<1.0	5 μg/L	78.7	49.6	131
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	1	μg/L	<1.0	5 μg/L	79.0	51.5	132
·	205-82-3							
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	μg/L	<1.0	5 μg/L	83.3	54.0	131
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	5 μg/L	82.4	52.3	133
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	μg/L	<1.0	5 μg/L	79.6	50.4	127
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	μg/L	<1.0	5 μg/L	80.3	50.0	127
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	μg/L	<1.0	5 μg/L	80.5	50.8	128

Page : 5 of 6 Work Order : EM2012989

Client : ATMA ENVIRONMENTAL P/L

Project : ELWOOD

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3	3163692)									
EP071: C10 - C14 Fraction		50	μg/L	<50	3330 μg/L	94.2	44.8	125		
EP071: C15 - C28 Fraction		100	μg/L	<100	16500 μg/L	88.4	51.3	135		
EP071: C29 - C36 Fraction		50	μg/L	<50	7800 μg/L	88.6	49.4	134		
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3	3164388)									
EP080: C6 - C9 Fraction		20	μg/L	<20	360 μg/L	96.9	65.5	129		
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions (QCL	ot: 3163692)								
EP071: >C10 - C16 Fraction		100	μg/L	<100	5690 μg/L	81.4	47.3	129		
EP071: >C16 - C34 Fraction		100	μg/L	<100	20700 μg/L	86.9	50.4	133		
EP071: >C34 - C40 Fraction		100	μg/L	<100	1510 μg/L	89.0	45.2	136		
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions (QCL	ot: 3164388)								
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	450 μg/L	102	64.3	126		
EP080: BTEXN (QCLot: 3164388)										
EP080: Benzene	71-43-2	1	μg/L	<1	20 μg/L	94.7	69.8	124		
EP080: Toluene	108-88-3	2	μg/L	<2	20 μg/L	102	73.6	126		
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	20 μg/L	103	72.0	126		
EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	40 μg/L	106	71.5	132		
	106-42-3									
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	20 μg/L	103	76.5	132		
EP080: Naphthalene	91-20-3	5	μg/L	<5	5 μg/L	102	70.5	127		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER						Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery L	Limits (%)			
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EG020F: Dissolved	Metals by ICP-MS (QCLot: 3164410)									
EM2012871-014	Anonymous	EG020A-F: Arsenic	7440-38-2	0.2 mg/L	102	85.0	131			
	EG020A-F: Beryllium	7440-41-7	0.2 mg/L	101	73.0	141				
		EG020A-F: Barium	7440-39-3	0.2 mg/L	96.6	75.0	127			
		EG020A-F: Cadmium	7440-43-9	0.05 mg/L	90.8	81.0	133			
		EG020A-F: Chromium	7440-47-3	0.2 mg/L	91.9	71.0	135			
		EG020A-F: Cobalt	7440-48-4	0.2 mg/L	95.6	78.0	132			
		EG020A-F: Copper	7440-50-8	0.2 mg/L	99.6	76.0	130			
		EG020A-F: Lead	7439-92-1	0.2 mg/L	90.2	75.0	133			
		EG020A-F: Manganese	7439-96-5	0.2 mg/L	92.9	64.0	134			
		EG020A-F: Nickel	7440-02-0	0.2 mg/L	97.4	73.0	131			

Page : 6 of 6 Work Order : EM2012989

Client : ATMA ENVIRONMENTAL P/L

Sub-Matrix: WATER				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020F: Dissolve	d Metals by ICP-MS (QCLot: 3164410) - continued						
EM2012871-014	Anonymous	EG020A-F: Vanadium	7440-62-2	0.2 mg/L	91.8	73.0	131
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	104	75.0	131
EG035F: Dissolve	d Mercury by FIMS (QCLot: 3164409)						
EM2012871-015	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	# 65.4	70.0	120
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 3164388)						
EM2012805-035	Anonymous	EP080: C6 - C9 Fraction		280 μg/L	68.1	43.0	125
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions (QCI	.ot: 3164388)					
EM2012805-035	Anonymous	EP080: C6 - C10 Fraction	C6_C10	330 µg/L	64.7	44.0	122
EP080: BTEXN (C	CLot: 3164388)						
EM2012805-035	Anonymous	EP080: Benzene	71-43-2	20 μg/L	85.4	68.0	130
		EP080: Toluene	108-88-3	20 μg/L	89.4	72.0	132

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EM2012989** Page : 1 of 5

Client : ATMA ENVIRONMENTAL P/L Laboratory : Environmental Division Melbourne

 Contact
 : MR RORY McPHILLIPS
 Telephone
 : +61-3-8549 9600

 Project
 : ELWOOD
 Date Samples Received
 : 27-Jul-2020

 Site
 : 1865B
 Issue Date
 : 29-Jul-2020

Sampler : KO No. of samples received : 1
Order number : --- No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 5 Work Order : EM2012989

Client : ATMA ENVIRONMENTAL P/L

Project : ELWOOD

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EG035F: Dissolved Mercury by FIMS	EM2012871015	Anonymous	Mercury	7439-97-6	65.4 %	70.0-120%	Recovery less than lower data quality
							objective

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Co	Count Rate (%)		€ (%)	Quality Control Specification
Method	QC	Regular	Actual Expected		
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	0	1	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	2	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
PAH/Phenols (GC/MS - SIM)	0	1	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	2	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

Method	Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) SPLIT_230720	23-Jul-2020				27-Jul-2020	19-Jan-2021	✓	
EG035F: Dissolved Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) SPLIT_230720	23-Jul-2020				28-Jul-2020	20-Aug-2020	✓	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP075(SIM)) SPLIT_230720	23-Jul-2020	27-Jul-2020	30-Jul-2020	✓	28-Jul-2020	05-Sep-2020	✓	
EP080/071: Total Petroleum Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP071) SPLIT_230720	23-Jul-2020	27-Jul-2020	30-Jul-2020	1	28-Jul-2020	05-Sep-2020	✓	
Clear glass VOC vial - HCI (EP080) SPLIT_230720	23-Jul-2020	27-Jul-2020	06-Aug-2020	1	28-Jul-2020	06-Aug-2020	√	

Page : 3 of 5 Work Order : EM2012989

Client : ATMA ENVIRONMENTAL P/L

Project : ELWOOD

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method Method	Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071) SPLIT_230720	23-Jul-2020	27-Jul-2020	30-Jul-2020	✓	28-Jul-2020	05-Sep-2020	✓
Clear glass VOC vial - HCI (EP080) SPLIT_230720	23-Jul-2020	27-Jul-2020	06-Aug-2020	1	28-Jul-2020	06-Aug-2020	✓
EP080: BTEXN							
Clear glass VOC vial - HCI (EP080) SPLIT_230720	23-Jul-2020	27-Jul-2020	06-Aug-2020	✓	28-Jul-2020	06-Aug-2020	1

Page : 4 of 5 Work Order EM2012989

Client ATMA ENVIRONMENTAL P/L

ELWOOD Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; ✓ = Quality Control frequency within specific
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Dissolved Mercury by FIMS	EG035F	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	1	0.00	10.00	x	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	2	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Dissolved Mercury by FIMS	EG035F	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Dissolved Mercury by FIMS	EG035F	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Dissolved Mercury by FIMS	EG035F	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	1	0.00	5.00	±	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	2	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 5 Work Order : EM2012989

Client : ATMA ENVIRONMENTAL P/L

Project : ELWOOD

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270E Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260D Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for sparging.

Landser	V		_		_		CH	IAI	N OF CI	JSTC	DDY					_	_		ALS				IIIII RV			
LANDSERV DETAILS									LABORATORY	DETAILS									-		NDSE			0-403		- 1
Address: 293A Bay Stree Project Manager: Angus R		Tel: 61 3 96- E-mail: n angus robin emily ,mcas	yan.edv son@lar	ndserv.co		om.au	,		Lab. Name: Lab. Address Contact Nam Tel:		Tuyer	simore Nguy 56 811	/en	, Scores	by, VI	С			1	EL-C-0		ue Da	te: 01/		M0790	
Sampled By: EM & AR		Landserv Proje	ct No: MO	790					Project Name	: Waltie	Watson	ESA									Pag	ge 1 of	ET			
Specifications: Metals Screen	en includes 8 metals (arsenic,	codmium, chromiun	n copper	mercury, r	nickel, lead	and zin	c)			T							-	Inalysis	Reques							
20 - A1	358								Yes /No							-		1			1		1			Other
	48h: 3 days 5days		_					-	Yes	Screen)	A-514 (TRH, PAH and Metals Screen)	absence/presence													T	Jiner -
2. Fast TAT Guarantee Requ	red#								No		N Pu	/pre:	1	1 1					1	1	1		1			1
3, is any sediment layer pre-	ent in waters to be excluded	from extractions9:							No	EP	AH a	aou.		1 1												1
	noved from samples to be re	ported as per NEPM	5.1.13;				_		No	(IWRG EPA	H, P	apse									1	1				
 Special storage requirem Low reporting limits require 						_		-	No No	~	4 (TR							1								
				Matrix		Pre	servatio	n T	Container	A-51	A-51	Asbestos	1	1 1												
Lab I.D. Number	Sample ID	Sample Date	soll	water	leachate	filfed	acid	ice	(No. & type)			1										-				
6678572	BH01/0-0.05	24/08/2020	X					Х	lor		Х	×											1			- 1
593	5H01/0.15-0.25	24/08/2020	X.					×	Jor														1			
57A	BH01/0,4-0.5	24/08/2020	X.					X	Jar		×															
575	SH501/0.4-0.5	24/08/2020	×					Х.	Jar	1	X						77									
	BH601/0.4-0.5	24/08/2020	X.					X	Jar								FORM	VARD TO	ENVIR	DLAB						
6678576	BH01/0.6-0.7	24/08/2020	X					X	Jar		Х]							V						
577	BH0 /0.9-1.0	24/08/2020	X					X	Jer		Į.															
578	BH01/1.4-1.5	24/08/2020	X.					X	Jar-	X		X								100						
579	8H03/0-0.05	24/08/2020	X					X	Jar		х															
580	BH03/0.15-0.25	24/08/2020	X					X	Jor		Ffi															
581	8103/0.4-0.5	24/08/2020	X					×	Jor																	
582	BH03/0.6-0.7	24/08/2020	×					X	Jar		x												1			
593	BH503/0.6-0.7	24/08/2020	χ					8	Jar		x															
	BH603/0.6-0.7	24/08/2020	X					X	Jar								FORM	VARD TO	ENVIR	DLAB						
6678784	8H04/0-0.05	24/08/2020	X					X	Jor																	
595	BH04/0.15-0.25	24/08/2020	X	1				×	Jar		X	X			1-1								15			
686	BH04/0,4-0.5	24/08/2020	X					×	Jar																	
587	BH04/0.6-0.7	24/08/2020	X					×	Jan												1					
588	BH05/0-0.05	24/08/2020	X					×	Jar		X						TI,									
589	8H05/0.15-0.25	24/08/2020	×		ATT (X	Jar		х															
																Lab Re	oort No					Esky I	D		- James	
Relinguished by:	Angus Robinson of Lan	Signed: dserv	-3	. A			Date: 2	25/08/20	323 Relinquished	by:				of			Signed);							Date:	
Received by:		Signed:					Dote:		Received by				-	MININ			Signed	i.	_						Date:	

YELLOW COPY - Retain in COC book as a back-up / spare record.

ANDSERV DETAILS									LABORATORY	DETAILS														
Address: 293A Bay Stree Project Manager: Angus Rob		Tel: 61 3 964 E-mail: n angus robin emily mcase	van,edv son@lar	naserv.co	om.au.	om,au,			Lab. Name: Lab. Address: Contact Name Tel:	e:	ALS 22 Do Tuyer 03 87	Nguy	en	Scaresb	y, VIC			Fax: Prelimin Final Rep Lab Que	oort by:	orf by:	Q	uote - Sc	oil M07	90
Sampled By: EM & AR		Landserv Projec	et No: MO	790					Project Name:	Wattie	Watson	EŠA							J	age	of			
	n includes 8 metais (arsenic.	cadmium, chromium	n, copper	mercury.	nickel, lead	and zing				1		_	_				Analysis i	Request	_		_		9	
20-403									Yes /No	_	a de	*						1 = 1					1	Othe
1. TAT required? 24hr 4									Yes	Screen)	Metals	absence/presence							1					
2. Fast TAT Guarantee Requir	eas								No	A So	pur	/bre			- 1				- 1	- 1				
	ent in woters to be excluded								No	8	AH	hice			- 1							- 1		
	noved from samples to be re	ported as per NEPM.	5/1,195		mnc ======	107			No	₩.	H. P.	agp							1	- 1				
5. Special storage requirement									No No	A-S1-R (IWRG EPA	4 (TR													
Low reporting limits require	ia iai grounawatersi	-1		Matrix		Preso	rvation	T	Container	A-51	A-S14 (TRH, PAH and A Screen)	Asbestos												
Lab I.D. Number	Sample ID	Sample Date	soil	water	leachate	fill ed a		ce	(No. & type)		-	4												
6678590	BH05/0.4-0.5	24/08/2020	×					×	Jar		×													1
591	8H05/0.6-0.7	24/08/2020	×	1 -				X	Jar					12.19										
592	BH06/0-0.05	24/08/2020	×					×	Jar															
593	BH06/0.15-0.25	24/08/2020	×.					X	Jar	1	x													
514	BH06/0.4-0.5	24/08/2020	×			in i		X	Jar		X	X												
595	BH06/0.6-0.7	24/08/2020	X					×	Jar															
596	8H07/0-0.05	24/08/2020	X	1		11	_ 1 K	X	Jat															
597	BH07/0.15-0.25	24/08/2020	Х					X	Jar															
598	BH07/0.4-0.5	24/08/2020	х					×	Jar		X	X				1								
599	BH07/0.6-0.7	24/08/2020	X					X	Jor															T'E
600	SH08/0-0.05	24/08/2020	X					X	Tat	×														
601	BH08/0.15-0.25	24/08/2020	×		-			X	Jan		11.0			100										
602	BH08/0.4-0.5	24/08/2020	×	1				X	Jar															
603	SH08/0.6-0.7	24/08/2020	×					X	Jar		x												T) I	
604	BH09/0-0.05	24/08/2020	×					×	Jor		x	×		1 = 1										
605	8H09/0.15-0.25	24/08/2020	X					X	Jor															
606	BH09/0.4-0.5	24/08/2020	Х					X	Jar							1 1							1 =	1
(07	5H09/0.8-0.7	24/08/2020	X					×	Jan		X	x												
603	BH10/0-0.05	24/08/2020	X					Х	Jan		1													
609	BH10/0,15-0,25	24/08/2020	×					×	Jar	×						1								
		2000													Lab	Report N	ă.			E	sky IO			
Relinquished by:	Angus Robinson of Land	Signed: dserv	-5	- Nen		E	ofe: 25	5/08/20	020 Relinquished t	Dy:				of		Signe	dr				***************************************		Date	\$
Received by:	(BK) . A	Signed:		2	0	25/5	ate:	15	Received by:					of		Signe	d)						Date	ŧ

ANDSERV DETAILS									LABORATORY	DETAILS														
Address: 293A Bay Street roject Manager: Angus Robii		Tel: 61 3 964 E-mail: ry angus.robin: emily.mcase	yan.edv son@lar	ndserv.co	om.ou.	om.au	I,		Lab. Name: Lab. Address: Contact Name Tel:		ALS 22 Do Tuyer 03 87	Nguy	en	Scores	by, Vi	5		Fin	x: eliminary R al Report L b Quole N	oy:	r.	Quote	- Soil M	л0790
ampled By: EM & AR		Landserv Projec	t No: MO	790					Project Name	Weitie	Walson	ESA								Pag	e I of I			
Specifications: Metals Screen	includes 8 metats (arsenic.	cadmium, chromium	, copper	mercury, r	nickel, lead	and zin	re)	_		T		_				_	An	alysis Req	uest	_				
20-40359			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						Yes /No		ls:									T				Off
LTAT required? 24hr 4	Brir 3 days 5days								Yes	(near)	(TRH, PAH and Metals Screen)	absence/presence					1							
2. Fast TAT Guarantee Requir	edi								No	A Ser	pun	/pre			1	į	1		1	1				
3. Is any sediment layer prese	ent in waters to be excluded	from extractions?:							No	H H	AH c	a Ca				1			1	1				
4, % extraneous material rem		ported as per NEPM S	5.1.13:						No	WRC	Scr Scr	abse			1	1	1			1				
5. Special storage requireme									No	A-S1-R (IWRG EPA	E					1	- 1							1
6. Low reporting limits require	a tor dronnawaters	1		Matrix	-	0.	eservati	411	Container	A-51	A-514	Asbestos				1	- 1						1	
Lab I.D. Number	Sample ID	Sample Date	soil	-	leachate		-		(No. & type)		1	4					- 1							
6678610	BH10/0,4-0,5	24/08/2020	×					×	Jor											1				
611	BH10/0.6-0.7	24/08/2020	×					8	Jar															
612	BH11/0-0.05	24/08/2020	X					×	Jar											1				
613	8H11/0:15-0:25	24/08/2020	χć					×	Jar											1				
614	BH11/0.4-0.5	24/08/2020	8					x	Jar		X	X												
615	3H11/0,6-0.7	24/08/2020	X					X	Jar															
616	BH12/0-0.05	24/08/2020	×					Х	Jor															
617	BH12/0.15-0.25	24/08/2020	×					х	Jan		х													
618	BH12/0.4-0.5	24/08/2020	X					X	Jar		×													
619	BH12/0.6-0.7	24/08/2020	8					×	Jar															
620	BH13/0-0.05	24/08/2020	X.					×	Jor		×	X.												
621	вн13/0.1 <i>5</i> -0.25	24/08/2020	X					X	Jar															
622	BH13/0,4-0,5	24/08/2020	Х					×	Jor															
623	BH13/0.6:0.7	24/08/2020	X					×	Jár	х								. 1/1						
62A	BH14/0-0.05	24/08/2020	×					ж	Jar		X													
625	BH14/G.15-0.25	24/08/2020	×					×	Jor															
626	SH14/0.4-0.5	24/08/2020	X		1			X	Jar		X													
627	BH14/0.6-0.7	24/08/2020	Ж					X	Jor															
628	BH02/0-0.05	24/08/2020	X					×	Jar															
6.29	BH02/0.15-0.25	24/08/2020	X					×	Jar		X													
															1	on Sept	ort No.				Esky ID			
einquished by.	Angus Robinson of Lan	Signed: aserv	1	in-			Date:	25/08/2	1020 Relinquished 1	oy:				of		.5	ignad:				ncofficocommonment		D	Date:
received by:		Signed:	/	7			Dale:		Received by:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					S	gnea:			_			D)ale:

Landser	/						CHA	AIN	OF CU	STO	DY	,													
ANDSERV DETAILS									LABORATORY	DETAILS															
Address: 293A Bay Stree roject Manager: Angus Ro		Fel; 61 3 964 E-mail: n angus.robin emily.mcase	yan.ed son@lar	ndserv.ci	om.au,	m.au,			Lab. Name: Lab. Address: Contact Name Tel:	e:		Nguy	en:	Scoresb	by, VIC			Fine	iminary R of Report I Quote N	by:		Quate	e - Soll i	M0791	0
ampled By; EM & AR		Landserv Projec	ct No: MO	790					Project Name:	Watte	Walson	ESA								Pag	e I of	1			
	n includes 8 metals (arsenic	coomium, chromium	copper	mercury,	nickel, lend o	and zind)		-									Ana	lysis Requ	est		******				
20-4035	8								Yes /No		-	ф													Other
.TAT required® 24hr						_		-	Yes	Screen)	A-S14 (TRH, PAH and Metals Screen)	presence				1					1	1	1	T	T
Fast TAT Guarantee Requi	ed?								No	1 Sar	N Du	/pre:					1		10						
	ent in waters to be excluded								No	5 EP/	AH d	absence/								W					
	naved from samples to be re	ported as per NEPM	5,1,18:					_	No	LIWRG	Sch Sch	abse			1		1	1		1					. 1
 Special storage requirement Low reporting limits require 						-		_	No No	000	4 (1	stos					- 18			1					
	- Hilling - State			Matrix		Prese	rvation		Container	A-51	A-SI	Asbestos				1	1								
Lab I.D. Number	Sample ID	Sample Date	soli	water	leachate	filt ed a	cid ic		No. & type)			1187				1									
6678630	BH02/0.4-0.5	24/08/2020	X				X		Jan																
631	BH02/0.6-0.7	24/08/2020	8				. 8		Jat																
632	BH02/0.9-1.0	24/08/2020	X				×		Jan		x	x								-					
633	8H02/1.4-1.5	24/08/2020	X				X		Jor		x														
634	BH15/0-0.05	24/08/2020	X				X		Jar																
635	BH15/0.15-0.25	24/08/2020	X.				×	1	Sar		X			1							1				
636	BH15/0.4-0.5	24/08/2020	×				X		Jar							+		+	_	1					
637	BH15/0.6-0.7	24/08/2020	×	1		1	×		Jar	1						+	1		_	+-	1				
638	3H16/0.0-0.05	24/08/2020	X			-	X	-	Jar	-					-	1		-	-	+	+				
639	BH16/0.15-0.25	24/08/2020	X		+ +	+	X		Jar	1	x					+	-	-	-	+	+	1	$\overline{}$		\rightarrow
	BH16/0.4-0.5	24/08/2020	X		-	-	X	-	Jar		X	х	-		-	-	+	-		+-	+				-
640				1		-	X			-	1	^	-		-	+	+	-	+	+-	+	-	\rightarrow		
641	BH16/0.6-0.7	24/08/2020	×	-	1-1	-	-	-	Jat	-		-			-	+	-	+	-	+	-			-	-
642	BH17/0.9-0.05	24/08/2020	X	1		-	×	-	Jat	-		-	-		-	+	-	-	-	-	-				-
643	BH17/0.15-0.25	24/08/2020	×	-		-	×	+	Jor	-	-				-	-	-	-	_	+-	-			-1	-
644	5H17/0.4-0.5	24/08/2020	X				×	-	dor	-	X					-		-	-	-	-				
645	BH17/0.6-0.7	24/08/2020	×				×	+	Jar	Х						1			_						
646	BH18/0.0-0.05	24/08/2020	X				X		Jac	-	X	X				1				-	1				
644	BH18/0.15-0.25	24/08/2020	×.				×	1	Jar-																
645	BH18/0.4-0,5	24/08/2020	×				X		Jar	×															
649	BH18/0.6-0.7	24/08/2020	Х.	11 70			X		Jar		X														
delinaushed by:	Angus Robinson of Lan	Signed:	-3	. Zien		Do	le: 25/0	08/2020	Relinquished E	NET.				ol	Lal	o Repo	ri No. gned:				Esky (D			Dale:	
Pecaved by: ORIGINAL (White Copy) - Alt	O EA of A	Signed: Signed: Signed:	Ser	SZ.	C X	5/8/2	ite: 20 io and v	1915 To lo che	Received by:	omois !	wassist 6	-avice	- Xuus -	of	пшун-п-ш пш		gned:	OPY - Re	tain in Có	DC book	as a bac	:k-up/s		Date:	

ANDSERV DETAILS							116.0	N OF CU			_						_						
Andress: 293A Bay Street Project Manager: Angus R	The second secon	Tel: 61 3 964 E-mail: ry angus robin emily maase	ran.edv son@lor	ndserv.co	em.au.	om.au,		Lab. Name: Lab. Address: Confact Name Tel:		ALS 22 Do Tuyer	almore 1 Nguy 56 811	yen	\$cores	by, VIC	*		Final	ninary Re Report b	y:		Quote -:	Soil MO7	90
iampled By: EM & AR		Landserv Frajes	No: MD	790				Project Name:	Walte	Watson	ESA								Page	T of I			
Specifications: Metals Scre	en inc udes 8 metals (arsenic, s	bodmium, chromium	, сарре:	mercury, r	icket lead	and zine)		Yes /No	-	4	2		()			Analy	rsis Reque	st					Other
1 TAT required? 24hr	48hr 3 days 5days							Yes.	Screen)	Meta	sence		1	1				1			0.00		1
2. Fast TAT Guarantee Requ								Ng	A Sc	A-S14 (TRH, PAH and Metals Screen)	absence/presence		1 1	1	- 1	İ							
	sent in waters to be excluded I							No	G EP	AH	ence					1			1 1				
 % extraneous material rel Special storage requirem 	moved from samples to be rep	orted as per NEPM:	51.13					No No	A-SI-R (IWRG EPA	SCr Scr	abs		1 1		1	1		1	1 1		1		
6. Low reporting limits requi								No	1-8	14(TI	Asbeslos					1							
Lab I.D. Number	Sample ID	Sample Date	o ne eman	Matrix		Preservo	ition	Container	4	A.S	Asb		1			1	1						
Ido i.o. Number	sumple iv	Sumple Date	soil	water	leachate	fill'ed ocio	ice	(No. & type)										1			1		1
6178650	BH19/0.0-0.05	24/08/2020	X				×	Jar		X													11.5
651	BH19/0.15-0.25	24/08/2020	X				×	Jer															
657	BH19/0.4-0.5	24/08/2020	×				×	Jat															
653	8H19/0.6-0.7	24/08/2020	1X				25	Jor		×			11 10										
654	8H20/D.0-0.05	24/08/2020	×				×	Jar-															
655	5H20/0.15-0.25	24/08/2020	X				x.	jar		X													
656	BH20/0.4-0.5	24/08/2020	X				X	Jar															
657	BH20/PACM 0.4-0.5	24/08/2020	×				x	Plastic 8ag x2			x												
658	BH20/0.6-0.7	24/08/2020	X				X	Jar				1						1					1
659	8H21/0.0-0.05	24/08/2020	×				×	Jor										1				1	
660	BH21/0.15-0.25	24/08/2020	×				x	Jar	×						-1		+	+			-	+	+
	8H21/0.4-0.5	24/08/2020	×	1			X	Jar	-		-	1		+	-	-	-	-			-	1	+
661	BH21/0 5-0.6	24/08/2020	×	-		\vdash	×	Jor	-	-	-	+-		-	-		+-	+		-	+	+	+-
					-		-	Jar	-	-	-	-	1	-	-	-	+	-		-	-	+	1
663	BH21/0.6-0.7	24/08/2020	×			\vdash	X		+-	-	-			-	-	-	-	+-	-	-	-		+
664	8H22/0.0-0.05	24/08/2020	X				X	Jai	-	+-	-			-	-		_	+-	+	-	-	+	+-
565	BH22/0.15-0.25	24/08/2020	×	-			8	Jar	-	-	-	-		-		-	-	+-	1 1		-	-	+
666	BH22/0.4-9.5	24/08/2020	Х				X	Jar	-	X	-	-					-	-			-		4
667	8H22/0.6-0.7	24/08/2020	X				×	Joi	-													1	1
668	3H23/0.0-0.05	24/08/2020	Х.				×	Jar		X	×							1		11.1			
66-1	3H23/0.15-0.25	24/08/2020	×				X	Joh															
690	6H23/0.4-0,5	24/08/2020	×				X	Jan									1						
671	BH23/0.6-0.7	24/08/2020	х				X	Jar		X													

ORIGINAL (White Copy) - Atlach to sample cooler with lid taped shut.

MS_F(Q7a_Rev8_19Mgy13_Chan_OF_Gustady_Geslang)

Received by:

signed: ALS SCENTESAY

"PIX COPY - Patrin in Project file and use to check off against Sample Pace of Advice

Received by:

YELLOW COPY - Refain in COC book as a back-up / spare record.

Date:

Signed:

LANDSERV DETAILS			_				1 17 31	N OF CU			_	_		_			_	_				_	_
Address: 293A Bay Siree	Port Malhourns	Tel: 61 3 964	K 0833				_	Lab. Name;	PETAILS	ALS	_	_	_	_			ox:	_	_			_	_
Address: 293A bay Siree Project Manager: Angus Rob		E-mail: n angus.robins emily.mcass	van.edw son@lan	dserv.co	m.au,	au,		Lab. Address: Conlact Name Tel:	ε		Nguy		Score	sby, V	C	P			t by:	Quo	te - Soil A	M0790	
iampled By: EM & AR		Landserv Projec	of No: MG	790				Project Name:	Waffe	Watson	ESA.							P	age I	of 1			
Specifications: Metals Scree		cadmium, chromium	т, соррат	mercury.	nickel lead on	danc)									An	alysis Re	quest						
20-4035	53							Yes /No	(1)	als	es	Callon Exchange Capacity (CEC.)				1						o	Other
L.TAT regulard? 24Hr 4								Yes	rec	Met	eser	4									1		
2. Fast TAT Guarantee Requi								No	ASC	pue (ıd/a	obde	93										
	ent in waters to be excluded	TO STATE OF THE PARTY OF THE PA	22.12					No	45	AH	ence	Ü	Cac	_						1			
	loved from samples to be re	ported as per NEPM :	5,1,19:					No	A-S1-R (IWRG EPA Screen)	A-514 (IRH, PAH and Metals Screen)	Asbestos absence/presence	ang	pH (CaCl)	Screen Metals (8)				1	1	1	1	1	
 Special storage requirement Low reporting limits require 			_					No No	æ	4 (18	stos	Exch		Aeta						1			
				Matrix		Preserva	ion	Container	A.S	A-51	spe	lon	1	La .	1 1						1 1		
tab I.D. Number	Sample ID	Sample Date	soil	water	leachate fil	'ed acid	ice	(No. & type)			-	S		Scre									- 1
6678672	BH24/0.0-0.05	24/08/2020	X				X,	Jar															
673	3H24/0 13-0:25	24/08/2020	- N.				X	Jar	7														
67A	BH24 ACM 0.2.	24/08/2020	×				×	Plastic Bag x2		1 .7	X												
625	BH24/0.4-C.5	24/08/2020	- X-				-X-	Jar		x	×										1 1		
676	BH24/0:6-0.7	24/06/2020	8.				X	Jar									\neg				+		\neg
677	BH25/0.0-0.05	24/08/2020	Ŷ				x	Jar	х													1	
698	8H25/0.15-0.25	24/08/2020	×				X	Jar									1						
679	BH25/0.4-0.5	24/08/2020	×				X.	Jor		x	1												1
680	BHS25/0:4-0.5	24/08/2020	X				·K	Jor		x													
	BH625/0,4-0.5	24/08/2020	×				-X-	For							FORWA	RD TO E	NVIROL	48				-	
678681	BH25/0:6-0.7	24/08/2020	×				×	Jar		X													
682	3H26/0.00-0.05	24/08/2020	X				X.	Jan															
683	8H26/0.15-0.25	24/08/2020	×				×	Jar															
634	8H26/0,4-0.5	24/08/2020	X				X	Jor	X		x						1						
685	3H25/0.6-0.7	24/08/2020	×				X	Jan															1
0516	RC1	24/08/2020		×		X	X	4 x vials. 1 plastic						X					1				
																		1					
	Ti-u-																						\neg
																1							_
					1		4							_	Lab Report No.				Esky	10			
Pelinquished by:	Annual Date of the Control of the Co	Signed	V	مسارو		Date	25/08/	2020 Relinquished b	Ý-				-v-		Signed							inte	
	Angus Robinson of Lanc	Herv	-3	1. 600									of										
Received by:	asty .	Signed:		-	7.6.	Date:		Received by							5igned:							late:	
Ct. HILL	CALL OF A	LS JOHNE	Ser 7		10	25/3/2	Also I	575					of										

ALS Water

Client:

A trading name of:

Ecowise Australia Pty Ltd ABN: 94 105 060 320

Caribbean Business Park, 22 Dalmore Drive, Scoresby, VIC 3179

www.ecowise.com.au www.alsqlogal.com

Sample Receipt Advice (SRA)

Client Contact:

Angus Robinson

Landserv Pty Ltd			Phone :	9646 0833
293A Bay Street	- 140, 0007	1	Mobile : Fax :	0431 177 498
PORT MELBOURNI	= VIC 3207		Email :	angus.robinson@landserv.com.au
Batch Summary:	ALS Water Batch No :	20-40358		
Date Received : Scheduled Reporting Date :	25/08/2020 3:54:01PM 01-Sep-2020			
Client Job Ref : No. of Sample(s) :	M0790 Wattie Watson E 115	SA		
Program : Purchase Order :	Misc Analysis n/a			
NATA report :	Reqd.			
Lab. Contact :	Tuyen Nguyen			
	Phone: (03) 8756 8116			
Please direct any enqeris you have reg	Tuyen.Nguyen@alsglobal.co arding this project to the above ALS Wate	om er contact .		
Delivery Details:				
COC Received :	YES			
Sample Tempe	rature on Receipt.	2	C°	
✓ Samples prese	rved where applicable #			
Comments:				

Disclaimer: This document contains priviledged and confidential information intended only for the use of the addressee. If you are not the addressee, you are hereby notified that you must not disseminate, copy or take action of its contents. If you have received this

document in error, please notify the ALS Water immediately.

Comparisons are made against pretreatment/prersevation as per AS,VICEPA,APHA,USEPA standards

Sample disposal - Aqueous (14 days), Solid (60 days) from date of completio of work order

Client:

Landserv Pty Ltd

293A Bay Street

PORT MELBOURNE VIC 3207

Client Contact: Angus Robinson

Phone: 9646 0833 Mobile: 0431 177 498

Fax:

Email: angus.robinson@landserv.com.au

Summary of Sample and Received Analysis:

ALS Sample	Sample Name	Date	Test Count
6678572	BH01/0-0.05	24/08/2020	8
6678574	BH01/0.4-0.5	24/08/2020	7
6678575	BH501/0.4-0.5	24/08/2020	7
6678576	BH01/0.6-0.7	24/08/2020	7
6678578	BH01/1.4-1.5	24/08/2020	21
6678579	BH03/0-0.05	24/08/2020	7
6678582	BH03/0.6-0.7	24/08/2020	7
6678583	BH503/0.6-0.7	24/08/2020	7
6678585	BH04/0.15-0.25	24/08/2020	8
6678588	BH05/0-0.05	24/08/2020	7
6678589	BH05/0.15-0.25	24/08/2020	7
6678590	BH05/0.4-0.5	24/08/2020	7
6678593	BH06/0.15-0.25	24/08/2020	7
6678594	BH06/0.4-0.5	24/08/2020	8
6678598	BH07/0.4-0.5	24/08/2020	8
6678600	BH08/0-0.05	24/08/2020	20
6678603	BH08/0.6-0.7	24/08/2020	7
6678604	BH09/0-0.05	24/08/2020	8
6678607	BH09/0.6-0.7	24/08/2020	8
6678609	BH10/0.15-0.25	24/08/2020	20
6678614	BH11/0.4-0.5	24/08/2020	8
6678617	BH12/0.15-0.25	24/08/2020	7
6678618	BH12/0.4-0.5	24/08/2020	7
6678620	BH13/0-0.05	24/08/2020	8
6678623	BH13/0.6-0.7	24/08/2020	20
6678624	BH14/0-0.05	24/08/2020	7
6678626	BH14/0.4-0.5	24/08/2020	7
6678629	BH02/0.15-0.25	24/08/2020	7
6678632	BH02/0.9-1.0	24/08/2020	8

Disclaimer :

This document contains priviledged and confidential information intended only for the use of the addressee. If you are not the addressee, you are hereby notified that you must not disseminate, copy or take action of its contents. If you have received this document in error, please notify the ALS Water immediately.

Comparisons are made against pretreatment/prersevation as per AS,VICEPA,APHA,USEPA standards

Sample disposal - Aqueous (14 days), Solid (60 days) from date of completio of work order

Client:

Landserv Pty Ltd

293A Bay Street

PORT MELBOURNE VIC 3207

Client Contact: Angus Robinson

> 9646 0833 Phone: 0431 177 498 Mobile:

> > Fax:

angus.robinson@landserv.com.au Email:

			Test Count
6678633	BH02/1.4-1.5	24/08/2020	7
6678635	BH15/0.15-0.25	24/08/2020	7
6678639	BH16/0.15-0.25	24/08/2020	7
6678640	BH16/0.4-0.5	24/08/2020	8
6678644	BH17/0.4-0.5	24/08/2020	7
6678645	BH17/0.6-0.7	24/08/2020	20
6678646	BH18/0.0-0.05	24/08/2020	8
6678648	BH18/0.4-0.5	24/08/2020	20
6678649	BH18/0.6-0.7	24/08/2020	7
6678650	BH19/0.0-0.05	24/08/2020	7
6678653	BH19/0.6-0.7	24/08/2020	7
6678655	BH20/0.15-0.25	24/08/2020	7
6678657	BH20/PACM 0.4-0.5	24/08/2020	1
6678660	BH21/0.15-0.25	24/08/2020	20
6678666	BH22/0.4-0.5	24/08/2020	7
6678668	BH23/0.0-0.05	24/08/2020	8
6678671	BH23/0.6-0.7	24/08/2020	7
6678674	BH24 ACM 0.2	24/08/2020	1
6678675	BH24/0.4-0.5	24/08/2020	8
6678677	BH25/0.0-0.05	24/08/2020	20
6678679	BH25/0.4-0.5	24/08/2020	7
6678680	BH525/0.4-0.5	24/08/2020	7
6678681	BH25/0.6-0.7	24/08/2020	7
6678684	BH26/0.4-0.5	24/08/2020	21
6678686	R01	24/08/2020	1

Disclaimer:

This document contains priviledged and confidential information intended only for the use of the addressee. If you are not the addressee, you are hereby notified that you must not disseminate, copy or take action of its contents. If you have received this document in error, please notify the ALS Water immediately.

Comparisons are made against pretreatment/prersevation as per AS, VICEPA, APHA, USEPA standards

Sample disposal - Aqueous (14 days), Solid (60 days) from date of completio of work order

Final Report

Client:

CERTIFICATE OF ANALYSIS

20-40358 Page Page 1 of 37 Batch No:

844277 Laboratory Scoresby Laboratory

> Address Caribbean Business Park, 22 Dalmore Drive, Scoresby, VIC 3179

Phone 03 8756 8000 **Landserv Pty Ltd** Fax 03 9763 1862 Contact: **Angus Robinson** Contact: Tuyen Nguyen Address: 293A Bay Street

Client Manager

PORT MELBOURNE VIC 3207 Tuyen.Nguyen@alsglobal.com AUSTRALIA

Date Sampled: 24-Aug-2020

Date Samples Received: 25-Aug-2020 Client Program Ref: M0790 Wattie Watson ESA 01-Sep-2020

Date Issued: ALS Program Ref: LANDSERV PO No: Not Available

The hash (#) below indicate	s methods not covered	by NATA accreditation in	the performance of this service.						
Analysis	Method	Laboratory	Analysis		Method	Laboratory	Analysis	Method	d Laboratory
BTEXN	WP074	Scoresby	СНС		WP084	Scoresby			
Cyanide	WK026SF	Scoresby	Total Fluoride		QWI-EN.WK040 T	Scoresby			
HVOL	WP074	Scoresby	MAH		WP125 & WP074	Scoresby			
Moisture	WA055	Scoresby	MS Total Metals		WG020B	Scoresby			
ОСР	WP068A	Scoresby	PAH		WP075B	Scoresby			
РСВ	WP066	Scoresby	рН		EA002	Scoresby			
Phenols(Halo)	WP075A	Scoresby	Phenols(NonHalo)		WP075A	Scoresby			
Total Cr 6+ DA	EG048G	Scoresby	TRH F2	#	WP071	Scoresby			
TRH & TPH (>C10)	WP071	Scoresby	TRH (C6-C10) & F1		WP071 (F1 not NATA)	Scoresby			
MS Total Metals	WG020A	Scoresby	Asbestos		EA200	ALS Melbourne			

Asbestos analysis conducted at ALS Springvale. 4 Westall Rd Springvale VIC 3170. The results may be found in their Work Order: EM2014690. NATA Accredited Laboratory Number: 825.

Please note:

Asbestos

6678572 24-08-20 BH01/0-0.05 is the same as #6678723 Not Detected 6678578 24-08-20 BH01/1.4-1.5 is the same as #6678725 Not Detected

6678585	24-08-20	BH04/0.15-0.25 is the same as #6678726	Not Detected
6678594	24-08-20	BH06/0.4-0.5 is the same as #6678727	Not Detected
6678598	24-08-20	BH07/0.4-0.5 is the same as #6678728	Not Detected
6678604	24-08-20	BH09/0-0.05 is the same as #6678729	Not Detected
6678607	24-08-20	BH09/0.6-0.7 is the same as #6678730	Not Detected
6678614	24-08-20	BH11/0.4-0.5 is the same as #6678731	Not Detected
6678620	24-08-20	BH13/0-0.05 is the same as #6678732	Not Detected
6678632	24-08-20	BH02/0.9-1.0 is the same as #6678733	Not Detected
6678640	24-08-20	BH16/0.4-0.5 is the same as #6678734	Not Detected
6678646	24-08-20	BH18/0.0-0.05 is the same as #6678735	Not Detected
6678657	24-08-20	BH20/PACM 0.4-0.5 is the same as #6678736	Chrysotile Detected
6678668	24-08-20	BH23/0.0-0.05 is the same as #6678737	Not Detected
6678674	24-08-20	BH24 ACM 0.2 is the same as #6678738	Chrysotile Detected
6678675	24-08-20	BH24/0.4-0.5 is the same as #6678739	Not Detected
6678684	24-08-20	BH26/0.4-0.5 is the same as #6678740	Not Detected

Measurement Uncertainties values for your compliance results are available at this link

Signatories

Name	Title	Name	Title
Brad Snibson	Client Manager	Chatura Perera	Team Leader Nutrients
Hao Zhang	Team Leader Organics	Kosta Christopoulos	Deputy Team Leader Organics
Mario Solorzano	Analyst	Ricky Singh	Analyst

Page: Page 2 of 37

 Page:
 Page 3 of 37

 Batch No:
 20-40358

Report Number:

Client:

844277 Landserv Pty Ltd

Client Program Ref:

6678686 24-08-20 R01

M0790 Wattie Watson ESA

<0.001

<0.001

		Analysis:	Moisture	pН	Total Fluoride	Cyanide	Total Cr 6+ DA			
Soil Analy	YSIS mpled Date Your Ref	Component: Units: Sample Type	Moisture % w/wet w	pH Units	Total Fluoride mg/kg	CN mg/kg	Total Cr6+ DA mg/kg			
6678578 24-	-08-20 BH01/1.4-1.5	SOIL	8	9.0	240	<5	<1			
6678600 24-	-08-20 BH08/0-0.05	SOIL	44	6.6	120	<5	<1			
6678609 24-	-08-20 BH10/0.15-0.25	SOIL	19	7.3	190	<5	<1			
6678623 24-	-08-20 BH13/0.6-0.7	SOIL	23	8.4	260	<5	<1			
6678645 24-	-08-20 BH17/0.6-0.7	SOIL	18	8.4	260	<5	<1			
6678648 24-	-08-20 BH18/0.4-0.5	SOIL	8	8.0	130	<5	<1			
6678660 24-	-08-20 BH21/0.15-0.25	SOIL	22	7.5	150	<5	<1			
6678677 24-	-08-20 BH25/0.0-0.05	SOIL	28	6.9	130	<5	<1			
6678684 24-	-08-20 BH26/0.4-0.5	SOIL	22	8.7	200	<5	<1			
Metals		Analysis:	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals
	mpled Date Your Ref	Component: Units: Sample Type	Arsenic mg/L	Cadmium mg/L	Chromium mg/L	Copper mg/L	Lead mg/L	Mercury mg/L	Nickel mg/L	Zinc mg/L

<0.001

<0.001

<0.001

< 0.0001

<0.0002

<0.001

WATER

 Page:
 Page 4 of 37

 Batch No:
 20-40358

 Report Number:
 844277

Report Number: 84427
Client: Lands

Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

Soil M	otolo	Analysis:	MS Total Metals								
	Sampled Date Your Ref	Component: Units: Sample Type	As mg/kg	Cd mg/kg	Cr mg/kg	Cu mg/kg	Pb mg/kg	Hg mg/kg	Mo mg/kg	Ni mg/kg	Se mg/kg
6678572	24-08-20 BH01/0-0.05	SOIL	<5	<0.2	9	16	56	0.1		8	
6678574	24-08-20 BH01/0.4-0.5	SOIL	11	2.2	22	230	1100	0.53		69	
6678575	24-08-20 BH501/0.4-0.5	SOIL	11	1.5	23	120	820	0.51		62	
6678576	24-08-20 BH01/0.6-0.7	SOIL	9	2.2	22	240	910	0.62		72	
6678578	24-08-20 BH01/1.4-1.5	SOIL	13	0.2		32	130	0.18	<5	47	<3
6678579	24-08-20 BH03/0-0.05	SOIL	5	<0.2	8	10	60	0.13		8	
6678582	24-08-20 BH03/0.6-0.7	SOIL	8	<0.2	7	16	56	0.09		17	
6678583	24-08-20 BH503/0.6-0.7	SOIL	11	<0.2	8	16	64	0.08		18	
6678585	24-08-20 BH04/0.15-0.25	SOIL	6	<0.2	11	13	71	0.16		14	
6678588	24-08-20 BH05/0-0.05	SOIL	<5	<0.2	12	17	80	0.12		9	
6678589	24-08-20 BH05/0.15-0.25	SOIL	<5	<0.2	15	17	88	0.12		12	
6678590	24-08-20 BH05/0.4-0.5	SOIL	16	1.3	23	250	1200	0.66		69	
6678593	24-08-20 BH06/0.15-0.25	SOIL	8	<0.2	10	7	50	0.08		10	
6678594	24-08-20 BH06/0.4-0.5	SOIL	16	0.3	21	22	150	0.18		36	
6678598	24-08-20 BH07/0.4-0.5	SOIL	15	0.3	25	23	170	0.28		24	
6678600	24-08-20 BH08/0-0.05	SOIL	<5	<0.2		11	49	0.09	<5	9	<3
6678603	24-08-20 BH08/0.6-0.7	SOIL	17	0.4	27	33	190	0.30		27	
6678604	24-08-20 BH09/0-0.05	SOIL	<5	<0.2	10	11	65	0.10		10	
6678607	24-08-20 BH09/0.6-0.7	SOIL	8	<0.2	18	10	59	0.11		12	
6678609	24-08-20 BH10/0.15-0.25	SOIL	5	<0.2		9	53	0.08	<5	9	<3
6678614	24-08-20 BH11/0.4-0.5	SOIL	15	0.3	25	26	230	0.68		28	
6678617	24-08-20 BH12/0.15-0.25	SOIL	9	<0.2	13	16	100	0.11		18	
6678618	24-08-20 BH12/0.4-0.5	SOIL	16	0.3	27	22	180	0.25		24	
6678620	24-08-20 BH13/0-0.05	SOIL	<5	<0.2	6	8	33	<0.05		5	
6678623	24-08-20 BH13/0.6-0.7	SOIL	17	0.5		32	200	0.30	<5	23	<3
6678624	24-08-20 BH14/0-0.05	SOIL	<5	<0.2	10	10	28	0.05		6	
	24-08-20 BH14/0.4-0.5	SOIL	16	0.4	26	31	320	0.36		29	
6678629	24-08-20 BH02/0.15-0.25	SOIL	11	0.2	22	17	140	0.15		19	
6678632	24-08-20 BH02/0.9-1.0	SOIL	56	<0.2	38	8	34	0.06		8	
6678633	24-08-20 BH02/1.4-1.5	SOIL	35	<0.2	52	13	17	0.07		22	
6678635	24-08-20 BH15/0.15-0.25	SOIL	6	<0.2	10	9	45	0.06		10	
6678639	24-08-20 BH16/0.15-0.25	SOIL	7	0.2	10	13	93	0.12		13	
6678640	24-08-20 BH16/0.4-0.5	SOIL	14	0.4	22	27	220	1.3		25	

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 Page:
 Page 5 of 37

 Batch No:
 20-40358

 Report Number:
 844277

Report Number: 8-

Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

		MS Total Metals								
		As	Cd	Cr ma/lea	Cu	Pb	Hg	Mo	Ni ma/ka	Se
		mg/kg								
6678644 24-08-20 BH17/0.4-0.5	SOIL	13	0.3	18	24	140	0.17		27	
6678645 24-08-20 BH17/0.6-0.7	SOIL	14	0.2		21	130	0.20	<5	19	<3
6678646 24-08-20 BH18/0.0-0.05	SOIL	8	<0.2	13	11	76	0.09		15	
6678648 24-08-20 BH18/0.4-0.5	SOIL	6	<0.2		22	110	0.07	<5	27	<3
6678649 24-08-20 BH18/0.6-0.7	SOIL	15	<0.2	15	120	140	0.08		42	
6678650 24-08-20 BH19/0.0-0.05	SOIL	<5	<0.2	6	6	23	<0.05		<5	
6678653 24-08-20 BH19/0.6-0.7	SOIL	24	0.2	23	16	120	0.15		20	
6678655 24-08-20 BH20/0.15-0.25	SOIL	6	<0.2	14	13	60	0.06		12	
6678660 24-08-20 BH21/0.15-0.25	SOIL	6	0.3		11	110	0.1	<5	12	<3
6678666 24-08-20 BH22/0.4-0.5	SOIL	14	0.3	27	24	210	0.31		26	
6678668 24-08-20 BH23/0.0-0.05	SOIL	8	0.2	13	17	120	0.10		14	
6678671 24-08-20 BH23/0.6-0.7	SOIL	7	0.3	14	60	630	0.22		43	
6678675 24-08-20 BH24/0.4-0.5	SOIL	10	0.3	17	23	130	0.15		21	
6678677 24-08-20 BH25/0.0-0.05	SOIL	<5	<0.2		8	50	0.05	<5	8	<3
6678679 24-08-20 BH25/0.4-0.5	SOIL	14	0.4	23	24	170	0.26		24	
6678680 24-08-20 BH525/0.4-0.5	SOIL	14	0.4	25	26	190	0.23		26	
6678681 24-08-20 BH25/0.6-0.7	SOIL	17	<0.2	11	12	85	0.09		13	
6678684 24-08-20 BH26/0.4-0.5	SOIL	18	0.2		22	130	0.19	<5	24	<3

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page 6 of 37 Page: Batch No: 20-40358 Report Number: 844277

Client: Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

Soil M	otale		Analysis:	MS Total Metals	MS Total Metals	MS Total Metals
Sample		ate Your Ref	Component: Units: Sample Type	Ag mg/kg	Sn mg/kg	Zn mg/kg
6678572	24-08-20	BH01/0-0.05	SOIL			120
6678574	24-08-20	BH01/0.4-0.5	SOIL			1500
6678575	24-08-20	BH501/0.4-0.5	SOIL			790
6678576	24-08-20	BH01/0.6-0.7	SOIL			1100
6678578	24-08-20	BH01/1.4-1.5	SOIL	<5	11	130
6678579	24-08-20	BH03/0-0.05	SOIL			98
6678582	24-08-20	BH03/0.6-0.7	SOIL			140
6678583	24-08-20	BH503/0.6-0.7	SOIL			120
6678585	24-08-20	BH04/0.15-0.25	SOIL			120
6678588	24-08-20	BH05/0-0.05	SOIL			130
6678589	24-08-20	BH05/0.15-0.25	SOIL			120
6678590	24-08-20	BH05/0.4-0.5	SOIL			1000
6678593	24-08-20	BH06/0.15-0.25	SOIL			68
6678594	24-08-20	BH06/0.4-0.5	SOIL			210
6678598	24-08-20	BH07/0.4-0.5	SOIL			310
6678600	24-08-20	BH08/0-0.05	SOIL	<5	<5	100
6678603	24-08-20	BH08/0.6-0.7	SOIL			410
6678604	24-08-20	BH09/0-0.05	SOIL			98
6678607	24-08-20	BH09/0.6-0.7	SOIL			110
6678609	24-08-20	BH10/0.15-0.25	SOIL	<5	<5	86
6678614	24-08-20	BH11/0.4-0.5	SOIL			320
6678617	24-08-20	BH12/0.15-0.25	SOIL			150
6678618	24-08-20	BH12/0.4-0.5	SOIL			260
6678620	24-08-20	BH13/0-0.05	SOIL			89
6678623	24-08-20	BH13/0.6-0.7	SOIL	<5	9	410
6678624	24-08-20	BH14/0-0.05	SOIL			67
6678626	24-08-20	BH14/0.4-0.5	SOIL			400
6678629	24-08-20	BH02/0.15-0.25	SOIL			190
6678632	24-08-20	BH02/0.9-1.0	SOIL			29
6678633	24-08-20	BH02/1.4-1.5	SOIL			25
6678635	24-08-20	BH15/0.15-0.25	SOIL			87
6678639	24-08-20	BH16/0.15-0.25	SOIL			130
6678640	24-08-20	BH16/0.4-0.5	SOIL			310

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page 7 of 37 Page: Batch No: 20-40358 Report Number: 844277

Client: Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

				MS Total Metals	MS Total Metals	MS Total Metals
				Ag mg/kg	Sn mg/kg	Zn mg/kg
6678644	24-08-20	BH17/0.4-0.5	SOIL			210
6678645	24-08-20	BH17/0.6-0.7	SOIL	<5	8	280
6678646	24-08-20	BH18/0.0-0.05	SOIL			110
6678648	24-08-20	BH18/0.4-0.5	SOIL	<5	13	99
6678649	24-08-20	BH18/0.6-0.7	SOIL			110
6678650	24-08-20	BH19/0.0-0.05	SOIL			43
6678653	24-08-20	BH19/0.6-0.7	SOIL			200
6678655	24-08-20	BH20/0.15-0.25	SOIL			97
6678660	24-08-20	BH21/0.15-0.25	SOIL	<5	<5	130
6678666	24-08-20	BH22/0.4-0.5	SOIL			320
6678668	24-08-20	BH23/0.0-0.05	SOIL			140
6678671	24-08-20	BH23/0.6-0.7	SOIL			340
6678675	24-08-20	BH24/0.4-0.5	SOIL			250
6678677	24-08-20	BH25/0.0-0.05	SOIL	<5	<5	94
6678679	24-08-20	BH25/0.4-0.5	SOIL			360
6678680	24-08-20	BH525/0.4-0.5	SOIL			360
6678681	24-08-20	BH25/0.6-0.7	SOIL			57
6678684	24-08-20	BH26/0.4-0.5	SOIL	<5	39	180

Soil M	ΔН		Analysis:	MAH
Sample	Sampled Da	ate Your Ref	Component: Units: Sample Type	Styrene mg/kg
6678578	24-08-20	BH01/1.4-1.5	SOIL	<0.5
6678600	24-08-20	BH08/0-0.05	SOIL	<0.5
6678609	24-08-20	BH10/0.15-0.25	SOIL	<0.5
6678623	24-08-20	BH13/0.6-0.7	SOIL	<0.5
6678645	24-08-20	BH17/0.6-0.7	SOIL	<0.5
6678648	24-08-20	BH18/0.4-0.5	SOIL	<0.5
6678660	24-08-20	BH21/0.15-0.25	SOIL	<0.5
6678677	24-08-20	BH25/0.0-0.05	SOIL	<0.5
6678684	24-08-20	BH26/0.4-0.5	SOIL	<0.5

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page 8 of 37 Page: Batch No: 20-40358 Report Number: 844277

Client: Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

Soil BTEXN	Analysis:	BTEXN	BTEXN	BTEXN	BTEXN	BTEXN	BTEXN	BTEXN	BTEXN
Sample Sampled Date Your Ref	Component: Units:	Benzene mg/kg	Toluene mg/kg	Ethyl Benzene mg/kg	Xylene - m&p mg/kg	Xylene - O mg/kg	Naphthalene mg/kg	Total Xylenes mg/kg	BTEX (Sum) mg/kg
	Sample Type	99	99	9.1.9	99	99	99	99	g.n.g
6678578 24-08-20 BH01/1.4-1.5	SOIL	<0.5	<0.5	<0.5	<1	<0.5	1.5	<1	<1
6678600 24-08-20 BH08/0-0.05	SOIL	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<1	<1
6678609 24-08-20 BH10/0.15-0.25	SOIL	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<1	<1
6678623 24-08-20 BH13/0.6-0.7	SOIL	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<1	<1
6678645 24-08-20 BH17/0.6-0.7	SOIL	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<1	<1
6678648 24-08-20 BH18/0.4-0.5	SOIL	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<1	<1
6678660 24-08-20 BH21/0.15-0.25	SOIL	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<1	<1
6678677 24-08-20 BH25/0.0-0.05	SOIL	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<1	<1
6678684 24-08-20 BH26/0.4-0.5	SOIL	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<1	<1

 Page:
 Page 9 of 37

 Batch No:
 20-40358

 Report Number:
 844277

Client: 844277

Client: Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

Soil TE	эц/трц	(Volatile)	Analysis:	TRH (C6-C10) & F1	TRH (C6-C10) & F1	TRH (C6-C10) & F1
Sample		ate Your Ref	Component: Units: Sample Type	TPHC6-C9 mg/kg	TRHC6-C10 mg/kg	TRHC6-C10 minus BTEX mg/kg
6678572	24-08-20	BH01/0-0.05	SOIL	<20	<20	<20
6678574	24-08-20	BH01/0.4-0.5	SOIL	<20	<20	<20
6678575	24-08-20	BH501/0.4-0.5	SOIL	<20	<20	<20
6678576	24-08-20	BH01/0.6-0.7	SOIL	<20	<20	<20
6678578	24-08-20	BH01/1.4-1.5	SOIL	<20	<20	<20
6678579	24-08-20	BH03/0-0.05	SOIL	<20	<20	<20
6678582	24-08-20	BH03/0.6-0.7	SOIL	<20	<20	<20
6678583	24-08-20	BH503/0.6-0.7	SOIL	<20	<20	<20
6678585	24-08-20	BH04/0.15-0.25	SOIL	<20	<20	<20
6678588	24-08-20	BH05/0-0.05	SOIL	<20	<20	<20
6678589	24-08-20	BH05/0.15-0.25	SOIL	<20	<20	<20
6678590	24-08-20	BH05/0.4-0.5	SOIL	<20	<20	<20
6678593	24-08-20	BH06/0.15-0.25	SOIL	<20	<20	<20
6678594	24-08-20	BH06/0.4-0.5	SOIL	<20	<20	<20
6678598	24-08-20	BH07/0.4-0.5	SOIL	<20	<20	<20
6678600	24-08-20	BH08/0-0.05	SOIL	<20	<20	<20
6678603	24-08-20	BH08/0.6-0.7	SOIL	<20	<20	<20
6678604	24-08-20	BH09/0-0.05	SOIL	<20	<20	<20
6678607	24-08-20	BH09/0.6-0.7	SOIL	<20	<20	<20
6678609	24-08-20	BH10/0.15-0.25	SOIL	<20	<20	<20
6678614	24-08-20	BH11/0.4-0.5	SOIL	<20	<20	<20
6678617	24-08-20	BH12/0.15-0.25	SOIL	<20	<20	<20
6678618	24-08-20	BH12/0.4-0.5	SOIL	<20	<20	<20
6678620	24-08-20	BH13/0-0.05	SOIL	<20	<20	<20
6678623	24-08-20	BH13/0.6-0.7	SOIL	<20	<20	<20
6678624	24-08-20	BH14/0-0.05	SOIL	<20	<20	<20
6678626	24-08-20	BH14/0.4-0.5	SOIL	<20	<20	<20
6678629	24-08-20	BH02/0.15-0.25	SOIL	<20	<20	<20
6678632	24-08-20	BH02/0.9-1.0	SOIL	<20	<20	<20
6678633	24-08-20	BH02/1.4-1.5	SOIL	<20	<20	<20
6678635	24-08-20	BH15/0.15-0.25	SOIL	<20	<20	<20
6678639	24-08-20	BH16/0.15-0.25	SOIL	<20	<20	<20
6678640	24-08-20	BH16/0.4-0.5	SOIL	<20	<20	<20

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page 10 of 37 Page: Batch No: 20-40358

Report Number:

844277

Client:

Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

				TRH (C6-C10) & F1	TRH (C6-C10) & F1	TRH (C6-C10) & F1
				TPHC6-C9 mg/kg	TRHC6-C10 mg/kg	TRHC6-C10 minus BTEX mg/kg
6678644	24-08-20	BH17/0.4-0.5	SOIL	<20	<20	<20
6678645	24-08-20	BH17/0.6-0.7	SOIL	<20	<20	<20
6678646	24-08-20	BH18/0.0-0.05	SOIL	<20	<20	<20
6678648	24-08-20	BH18/0.4-0.5	SOIL	<20	<20	<20
6678649	24-08-20	BH18/0.6-0.7	SOIL	<20	<20	<20
6678650	24-08-20	BH19/0.0-0.05	SOIL	<20	<20	<20
6678653	24-08-20	BH19/0.6-0.7	SOIL	<20	<20	<20
6678655	24-08-20	BH20/0.15-0.25	SOIL	<20	<20	<20
6678660	24-08-20	BH21/0.15-0.25	SOIL	<20	<20	<20
6678666	24-08-20	BH22/0.4-0.5	SOIL	<20	<20	<20
6678668	24-08-20	BH23/0.0-0.05	SOIL	<20	<20	<20
6678671	24-08-20	BH23/0.6-0.7	SOIL	<20	<20	<20
6678675	24-08-20	BH24/0.4-0.5	SOIL	<20	<20	<20
6678677	24-08-20	BH25/0.0-0.05	SOIL	<20	<20	<20
6678679	24-08-20	BH25/0.4-0.5	SOIL	<20	<20	<20
6678680	24-08-20	BH525/0.4-0.5	SOIL	<20	<20	<20
6678681	24-08-20	BH25/0.6-0.7	SOIL	<20	<20	<20
6678684	24-08-20	BH26/0.4-0.5	SOIL	<20	<20	<20

 Page:
 Page 11 of 37

 Batch No:
 20-40358

 Page 11 of 37

Report Number:

844277

Client:

Landserv Pty Ltd

Client Program Ref:

M0790 Wattie Watson ESA

Sail TE	RH/TPH	Analysis:	TRH F2	TRH & TPH (>C10)						
	Sampled Date Your Ref	Component: Units: Sample Type	TRH>C10-C16 minusNAP mg/kg	TPH C10-C14 mg/kg	TPH C15-C28 mg/kg	TPH C29-C36 mg/kg	TRH>C10-C16 mg/kg	TRH>C16-C34 mg/kg	TRH>C34-C40 mg/kg	Sum of TRH>C10-C40 mg/kg
6678572	24-08-20 BH01/0-0.05	SOIL	<20	<20	<50	67	<20	79	<50	79
6678574	24-08-20 BH01/0.4-0.5	SOIL	<20	<20	310	480	<20	730	260	990
6678575	24-08-20 BH501/0.4-0.5	SOIL	<60	<60 LORR	260	500	<60 LORR	710	270	980
6678576	24-08-20 BH01/0.6-0.7	SOIL	<60	<60 LORR	290	570	<60 LORR	790	320	1100
6678578	24-08-20 BH01/1.4-1.5	SOIL	<20	<200 LORR	6800	2200	<200 LORR	9100	590	9700
6678579	24-08-20 BH03/0-0.05	SOIL	<20	<20	120	200	<20	290	76	370
6678582	24-08-20 BH03/0.6-0.7	SOIL	<400	<400 LORR	2900	2700	<400 LORR	5600	<1000 LORR	5600
6678583	24-08-20 BH503/0.6-0.7	SOIL	<400	<400 LORR	2700	2300	<400 LORR	5300	<1000 LORR	5300
6678585	24-08-20 BH04/0.15-0.25	SOIL	<20	<20	240	230	<20	470	74	540
6678588	24-08-20 BH05/0-0.05	SOIL	<40	<40 LORR	<100 LORR	110	<40 LORR	110	<100 LORR	110
6678589	24-08-20 BH05/0.15-0.25	SOIL	<20	<20	<50	54	<20	68	<50	68
6678590	24-08-20 BH05/0.4-0.5	SOIL	<60	<60 LORR	460	590	<60 LORR	980	280	1300
6678593	24-08-20 BH06/0.15-0.25	SOIL	<20	<20	79	100	<20	170	<50	170
6678594	24-08-20 BH06/0.4-0.5	SOIL	<60	<60 LORR	890	640	<60 LORR	1500	200	1700
6678598	24-08-20 BH07/0.4-0.5	SOIL	<20	<20	960	750	<20	1700	230	1900
6678600	24-08-20 BH08/0-0.05	SOIL	<20	<20	180	200	<20	360	77	440
6678603	24-08-20 BH08/0.6-0.7	SOIL	<20	<20	1000	880	<20	1900	280	2200
6678604	24-08-20 BH09/0-0.05	SOIL	<40	<40 LORR	120	230	<40 LORR	340	<100 LORR	340
6678607	24-08-20 BH09/0.6-0.7	SOIL	<20	<20	360	280	<20	650	80	730
6678609	24-08-20 BH10/0.15-0.25	SOIL	<20	<20	110	180	<20	270	81	350
6678614	24-08-20 BH11/0.4-0.5	SOIL	<80	<80 LORR	730	610	<80 LORR	1300	<200 LORR	1300
6678617	24-08-20 BH12/0.15-0.25	SOIL	<60	<60 LORR	290	250	<60 LORR	500	<150 LORR	500
6678618	24-08-20 BH12/0.4-0.5	SOIL	<20	<20	790	750	<20	1400	370	1800
6678620	24-08-20 BH13/0-0.05	SOIL	<20	<20	120	220	<20	270	100	370
6678623	24-08-20 BH13/0.6-0.7	SOIL	<80	<80 LORR	320	350	<80 LORR	630	<200 LORR	630
6678624	24-08-20 BH14/0-0.05	SOIL	<20	<20	85	170	<20	200	78	280
6678626	24-08-20 BH14/0.4-0.5	SOIL	<80	<80 LORR	1200	1100	<80 LORR	2100	270	2400
6678629	24-08-20 BH02/0.15-0.25	SOIL	<80	<80 LORR	460	420	<80 LORR	810	<200 LORR	810
6678632	24-08-20 BH02/0.9-1.0	SOIL	<20	<20	58	<50	<20	100	<50	100
6678633	24-08-20 BH02/1.4-1.5	SOIL	<20	<20	<50	<50	<20	<50	<50	<50
6678635	24-08-20 BH15/0.15-0.25	SOIL	<20	<20	71	91	<20	140	<50	140
6678639	24-08-20 BH16/0.15-0.25		<20	<20	190	210	<20	370	57	430
6678640	24-08-20 BH16/0.4-0.5	SOIL	<80	<80 LORR	720	660	<80 LORR	1300	<200 LORR	1300

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 Page:
 Page 12 of 37

 Batch No:
 20-40358

 Report Number:
 844277

Report Number:
Client:

Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

			TRH F2	TRH & TPH (>C10)						
			TRH>C10-C16 minusNAP mg/kg	TPH C10-C14 mg/kg	TPH C15-C28 mg/kg	TPH C29-C36 mg/kg	TRH>C10-C16 mg/kg	TRH>C16-C34 mg/kg	TRH>C34-C40 mg/kg	Sum of TRH>C10-C40 mg/kg
6678644 24-08-20	BH17/0.4-0.5	SOIL	<60	<60 LORR	520	390	<60 LORR	870	<150 LORR	870
6678645 24-08-20	BH17/0.6-0.7	SOIL	<20	<20	300	310	<20	570	150	720
6678646 24-08-20	BH18/0.0-0.05	SOIL	<80	<80 LORR	240	220	<80 LORR	430	<200 LORR	430
6678648 24-08-20	BH18/0.4-0.5	SOIL	<60	<60 LORR	430	430	<60 LORR	810	<150 LORR	810
6678649 24-08-20	BH18/0.6-0.7	SOIL	<60	<60 LORR	1600	1600	<60 LORR	2900	570	3500
6678650 24-08-20	BH19/0.0-0.05	SOIL	<20	<20	<50	63	<20	66	<50	66
6678653 24-08-20	BH19/0.6-0.7	SOIL	<80	<80 LORR	360	270	<80 LORR	620	<200 LORR	620
6678655 24-08-20	BH20/0.15-0.25	SOIL	<20	<20	88	110	<20	170	<50	170
6678660 24-08-20	BH21/0.15-0.25	SOIL	<80	<80 LORR	230	210	<80 LORR	410	<200 LORR	410
6678666 24-08-20	BH22/0.4-0.5	SOIL	<60	<60 LORR	890	650	<60 LORR	1700	210	1900
6678668 24-08-20	BH23/0.0-0.05	SOIL	<20	<20	240	340	<20	530	170	700
6678671 24-08-20	BH23/0.6-0.7	SOIL	<60	<60 LORR	1400	1300	<60 LORR	2700	410	3100
6678675 24-08-20	BH24/0.4-0.5	SOIL	<60	<60 LORR	490	480	<60 LORR	950	<150 LORR	950
6678677 24-08-20	BH25/0.0-0.05	SOIL	<20	<20	190	290	<20	400	100	500
6678679 24-08-20	BH25/0.4-0.5	SOIL	<60	<60 LORR	880	720	<60 LORR	1600	210	1800
6678680 24-08-20	BH525/0.4-0.5	SOIL	<60	<60 LORR	980	790	<60 LORR	1800	240	2000
6678681 24-08-20	BH25/0.6-0.7	SOIL	<200	<200 LORR	560	510	<200 LORR	1100	<500 LORR	1100
6678684 24-08-20	BH26/0.4-0.5	SOIL	<200	<200 LORR	900	490	<200 LORR	1400	<500 LORR	1400

LORR

Limit of Reporting has been raised due to high moisture content, insufficient sample or matrix interference.

Page 13 of 37 Page: Batch No: 20-40358 844277

Report Number:

Landserv Pty Ltd

Client Program Ref:

Client:

M0790 Wattie Watson ESA

Soil PA	ш	Analysis:	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH
	□ Sampled Date Your Ref	Component: Units: Sample Type	Acenaphthene mg/kg	Acenaphthylene mg/kg	Anthracene mg/kg	Benz(a)anthracene mg/kg	Benzo(a)pyrene mg/kg	Benz(b)fluranthen mg/kg	Benzo(ghi)perylene mg/kg	Benz(k)fluranthen mg/kg	Chrysene mg/kg
6678572	24-08-20 BH01/0-0.05	SOIL	<0.1	<0.1	<0.1	0.1	0.2	0.2	0.2	0.1	0.1
6678574	24-08-20 BH01/0.4-0.5	SOIL	<0.3 LORR	0.5	0.8	3.4	4.4	3.9	4.2	3.4	3.5
6678575	24-08-20 BH501/0.4-0.5	SOIL	<0.3 LORR	0.5	0.8	3.4	4.4	3.9	4.4	3.4	3.4
6678576	24-08-20 BH01/0.6-0.7	SOIL	<0.6 LORR	<0.6 LORR	0.8	2.9	5.4	4.1	4.1	4.1	4.2
6678578	24-08-20 BH01/1.4-1.5	SOIL	2.6	24	57	130	130	100	74	98	120
6678579	24-08-20 BH03/0-0.05	SOIL	<0.1	0.2	0.3	1.6	2.3	2.4	2.0	1.4	1.8
6678582	24-08-20 BH03/0.6-0.7	SOIL	<2 LORR	<2 LORR	2.3	21	37	36	31	26	24
6678583	24-08-20 BH503/0.6-0.7	SOIL	<2 LORR	<2 LORR	3.1	23	38	36	31	28	26
6678585	24-08-20 BH04/0.15-0.25	SOIL	<0.2 LORR	0.5	0.9	4.5	6.0	5.3	5.2	4.2	4.8
6678588	24-08-20 BH05/0-0.05	SOIL	<0.1	<0.1	<0.1	0.3	0.5	0.4	0.4	0.4	0.4
6678589	24-08-20 BH05/0.15-0.25	SOIL	<0.1	<0.1	<0.1	0.4	0.6	0.5	0.5	0.4	0.5
6678590	24-08-20 BH05/0.4-0.5	SOIL	<0.6 LORR	0.6	2.0	5.2	8.7	6.5	4.7	6.2	7.4
6678593	24-08-20 BH06/0.15-0.25	SOIL	<0.1	0.2	0.3	1.7	2.2	1.9	1.8	1.5	1.8
6678594	24-08-20 BH06/0.4-0.5	SOIL	<0.3 LORR	2.2	2.9	16	20	18	16	14	17
6678598	24-08-20 BH07/0.4-0.5	SOIL	<0.6 LORR	1.6	2.4	13	27	21	22	21	21
6678600	24-08-20 BH08/0-0.05	SOIL	<0.2 LORR	0.3	0.5	3.0	4.2	3.5	3.6	3.0	3.2
6678603	24-08-20 BH08/0.6-0.7	SOIL	<0.6 LORR	1.5	2.1	10	24	19	16	19	19
6678604	24-08-20 BH09/0-0.05	SOIL	<0.2 LORR	0.3	0.4	2.3	3.2	2.8	2.8	2.6	2.5
6678607	24-08-20 BH09/0.6-0.7	SOIL	<0.2 LORR	0.8	1.1	6.3	8.6	8.8	7.2	4.9	7.1
6678609	24-08-20 BH10/0.15-0.25	SOIL	<0.2 LORR	0.3	0.4	2.2	3.1	2.6	2.6	2.5	2.5
6678614	24-08-20 BH11/0.4-0.5	SOIL	<0.6 LORR	1.3	2.1	11	24	18	14	18	18
6678617	24-08-20 BH12/0.15-0.25	SOIL	<0.6 LORR	<0.6 LORR	1.4	5.3	11	8.1	6.8	8.0	8.7
6678618	24-08-20 BH12/0.4-0.5	SOIL	<0.6 LORR	1.4	1.7	8.2	19	15	17	15	15
6678620	24-08-20 BH13/0-0.05	SOIL	<0.1	<0.1	0.1	0.5	1.1	0.8	0.8	0.9	0.9
6678623	24-08-20 BH13/0.6-0.7	SOIL	<0.6 LORR	0.7	0.9	5.0	8.2	7.3	7.6	6.4	7.1
6678624	24-08-20 BH14/0-0.05	SOIL	<0.2 LORR	<0.2 LORR	0.7	1.5	2.3	1.6	1.5	1.4	1.8
6678626	24-08-20 BH14/0.4-0.5	SOIL	<0.6 LORR	2.0	3.1	17	36	27	25	27	25
6678629	24-08-20 BH02/0.15-0.25	SOIL	<0.6 LORR	0.8	1.2	6.2	14	11	10	11	11
6678632	24-08-20 BH02/0.9-1.0	SOIL	<0.1	<0.1	0.2	0.8	1.5	1.2	1.0	1.2	1.2
6678633	24-08-20 BH02/1.4-1.5	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6678635	24-08-20 BH15/0.15-0.25	SOIL	<0.1	0.1	0.2	1.0	2.2	1.7	1.6	1.7	1.7
6678639	24-08-20 BH16/0.15-0.25	SOIL	<0.3 LORR	0.3	0.5	2.7	6.2	4.9	4.7	4.9	4.8
6678640	24-08-20 BH16/0.4-0.5	SOIL	<0.6 LORR	1.4	2.0	12	21	15	15	13	16

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page: Page 14 of 37 Batch No: 20-40358

Report Number:

844277

Client:

Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

		PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH
		Acenaphthene mg/kg	Acenaphthylene mg/kg	Anthracene mg/kg	Benz(a)anthracene mg/kg	Benzo(a)pyrene mg/kg	Benz(b)fluranthen mg/kg	Benzo(ghi)perylene mg/kg	Benz(k)fluranthen mg/kg	Chrysene mg/kg
6678644 24-08-20 BH17/0.4-0.5	SOIL	<0.6 LORR	<0.6 LORR	2.9	9.4	18	13	10	13	14
6678645 24-08-20 BH17/0.6-0.7	SOIL	<0.6 LORR	0.6	0.7	3.7	6.2	5.2	5.1	4.5	5.3
6678646 24-08-20 BH18/0.0-0.05	SOIL	<0.7 LORR	<0.7 LORR	0.8	4.4	9.9	7.5	6.0	7.6	7.7
6678648 24-08-20 BH18/0.4-0.5	SOIL	<0.5 LORR	0.8	1.0	9.1	16	11	11	9.8	11
6678649 24-08-20 BH18/0.6-0.7	SOIL	<0.6 LORR	1.3	3.4	26	43	28	27	26	27
6678650 24-08-20 BH19/0.0-0.05	SOIL	<0.1	<0.1	<0.1	0.5	0.7	0.6	0.7	0.6	0.7
6678653 24-08-20 BH19/0.6-0.7	SOIL	<0.6 LORR	0.8	1.1	5.9	12	9.3	7.0	9.1	10
6678655 24-08-20 BH20/0.15-0.25	SOIL	<0.3 LORR	<0.3 LORR	<0.3 LORR	1.2	2.9	2.3	2.0	2.3	2.2
6678660 24-08-20 BH21/0.15-0.25	SOIL	<0.6 LORR	<0.6 LORR	0.7	3.7	6.1	5.0	4.8	4.4	5.1
6678666 24-08-20 BH22/0.4-0.5	SOIL	<0.6 LORR	1.7	2.6	13	23	17	16	15	17
6678668 24-08-20 BH23/0.0-0.05	SOIL	<0.7 LORR	<0.7 LORR	<0.7 LORR	2.5	5.8	4.6	3.8	4.5	4.6
6678671 24-08-20 BH23/0.6-0.7	SOIL	<0.6 LORR	1.1	2.1	13	24	17	19	16	16
6678675 24-08-20 BH24/0.4-0.5	SOIL	<0.6 LORR	0.9	1.4	6.6	11	8.3	8.3	7.3	9.0
6678677 24-08-20 BH25/0.0-0.05	SOIL	<0.7 LORR	<0.7 LORR	<0.7 LORR	2.3	3.9	3.5	3.5	3.1	3.4
6678679 24-08-20 BH25/0.4-0.5	SOIL	<0.6 LORR	1.5	2.2	12	20	14	15	13	15
6678680 24-08-20 BH525/0.4-0.5	SOIL	<0.6 LORR	1.6	2.5	13	22	16	16	14	16
6678681 24-08-20 BH25/0.6-0.7	SOIL	<0.6 LORR	<0.6 LORR	0.7	4.1	9.9	7.4	6.3	7.2	7.6
6678684 24-08-20 BH26/0.4-0.5	SOIL	<0.7 LORR	<0.7 LORR	0.9	4.5	7.9	6.3	6.2	5.5	6.1

LORR

Limit of Reporting has been raised due to high moisture content, insufficient sample or matrix

interference.

Page 15 of 37 Page: Batch No: 20-40358

Report Number:

844277

Client:

Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

Soil PA	4	Analysis:	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH
	ampled Date Your Ref	Component: Units: Sample Type	Dibenz(ah)anthrcn mg/kg	Fluoranthene mg/kg	Fluorene mg/kg	Indeno(123)pyrene mg/kg	Naphthalene mg/kg	Phenanthrene mg/kg	Pyrene mg/kg	Total PAHs mg/kg	BaP TEQ (zero) mg/kg
6678572	24-08-20 BH01/0-0.05	SOIL	<0.1	0.2	<0.1	0.2	<0.1	<0.1	0.3	1.6	0.3
6678574	24-08-20 BH01/0.4-0.5	SOIL	0.9	5.9	<0.3 LORR	3.9	<0.3 LORR	2.3	6.0	43	6.8
6678575 2	24-08-20 BH501/0.4-0.5	SOIL	1.0	5.8	<0.3 LORR	4.1	<0.3 LORR	2.2	5.9	43	7.0
6678576 2	24-08-20 BH01/0.6-0.7	SOIL	<0.6 LORR	6.7	<0.6 LORR	3.4	<0.6 LORR	2.6	6.9	45	6.9
6678578	24-08-20 BH01/1.4-1.5	SOIL	16	360	12	84	5.5	310	310	1800	190
6678579 2	24-08-20 BH03/0-0.05	SOIL	0.5	3.0	<0.1	2.0	<0.1	1.0	3.1	22	3.6
6678582 2	24-08-20 BH03/0.6-0.7	SOIL	7.6	28	<2 LORR	32	<2 LORR	4.7	32	280	57
6678583 2	24-08-20 BH503/0.6-0.7	SOIL	8.1	32	<2 LORR	32	<2 LORR	8.3	35	300	59
6678585 2	24-08-20 BH04/0.15-0.25	SOIL	1.2	9.0	<0.2 LORR	5.2	<0.2 LORR	3.4	9.0	59	9.2
6678588 2	24-08-20 BH05/0-0.05	SOIL	<0.1	0.6	<0.1	0.4	<0.1	0.2	0.6	4.2	0.7
6678589 2	24-08-20 BH05/0.15-0.25	SOIL	0.1	0.7	<0.1	0.5	<0.1	0.2	0.8	5.2	0.9
6678590 2	24-08-20 BH05/0.4-0.5	SOIL	1.1	15	<0.6 LORR	4.5	<0.6 LORR	9.6	15	86	12
6678593 2	24-08-20 BH06/0.15-0.25	SOIL	0.5	3.0	<0.1	1.9	<0.1	0.9	3.1	21	3.4
6678594 2	24-08-20 BH06/0.4-0.5	SOIL	3.9	30	0.6	16	0.3	13	31	200	31
6678598 2	24-08-20 BH07/0.4-0.5	SOIL	4.1	35	0.7	16	<0.6 LORR	13	36	230	39
6678600 2	24-08-20 BH08/0-0.05	SOIL	0.7	5.5	<0.2 LORR	3.5	<0.2 LORR	1.9	5.8	39	6.3
6678603 2	24-08-20 BH08/0.6-0.7	SOIL	3.3	30	<0.6 LORR	15	<0.6 LORR	11	31	200	34
6678604 2	24-08-20 BH09/0-0.05	SOIL	0.7	3.9	<0.2 LORR	2.8	<0.2 LORR	1.1	4.3	30	5.0
6678607 2	24-08-20 BH09/0.6-0.7	SOIL	1.7	12	0.2	7.2	<0.2 LORR	4.5	13	83	13
6678609 2	24-08-20 BH10/0.15-0.25	SOIL	0.6	4.1	<0.2 LORR	2.6	<0.2 LORR	1.4	4.3	29	4.7
6678614 2	24-08-20 BH11/0.4-0.5	SOIL	3.5	30	<0.6 LORR	14	<0.6 LORR	11	31	200	34
6678617 2	24-08-20 BH12/0.15-0.25	SOIL	1.3	15	<0.6 LORR	6.3	<0.6 LORR	7.6	16	96	15
6678618 2	24-08-20 BH12/0.4-0.5	SOIL	2.8	23	<0.6 LORR	12	<0.6 LORR	8.2	24	160	27
6678620 2	24-08-20 BH13/0-0.05	SOIL	0.2	1.4	<0.1	0.6	<0.1	0.5	1.6	9.4	1.6
6678623 2	24-08-20 BH13/0.6-0.7	SOIL	1.1	11	<0.6 LORR	7.6	<0.6 LORR	3.9	12	79	12
6678624	24-08-20 BH14/0-0.05	SOIL	0.2	4.3	<0.2 LORR	1.6	<0.2 LORR	2.9	3.9	24	3.1
6678626 2	24-08-20 BH14/0.4-0.5	SOIL	4.9	43	0.7	21	<0.6 LORR	15	45	290	51
6678629 2	24-08-20 BH02/0.15-0.25	SOIL	2.1	18	<0.6 LORR	8.6	<0.6 LORR	6.6	18	120	20
6678632 2	24-08-20 BH02/0.9-1.0	SOIL	0.2	2.3	<0.1	0.8	<0.1	1.2	2.2	14	2.1
6678633 2	24-08-20 BH02/1.4-1.5	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6678635	24-08-20 BH15/0.15-0.25	SOIL	0.3	2.5	<0.1	1.4	<0.1	0.8	2.7	18	3.1
6678639 2	24-08-20 BH16/0.15-0.25	SOIL	0.9	7.3	<0.3 LORR	3.7	<0.3 LORR	2.4	7.8	51	8.8
6678640 2	24-08-20 BH16/0.4-0.5	SOIL	2.3	24	<0.6 LORR	16	<0.6 LORR	8.0	26	170	29

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page: Page 16 of 37 Batch No: 20-40358

Report Number:

Client:

844277

Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

		PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH
		Dibenz(ah)anthrcn mg/kg	Fluoranthene mg/kg	Fluorene mg/kg	Indeno(123)pyrene mg/kg	Naphthalene mg/kg	Phenanthrene mg/kg	Pyrene mg/kg	Total PAHs mg/kg	BaP TEQ (zero) mg/kg
6678644 24-08-20 BH17/0.4-0.5	SOIL	2.5	27	<0.6 LORR	9.3	<0.6 LORR	13	25	160	25
6678645 24-08-20 BH17/0.6-0.7	SOIL	0.7	8.0	<0.6 LORR	5.1	<0.6 LORR	2.8	8.4	56	8.9
6678646 24-08-20 BH18/0.0-0.05	SOIL	1.5	12	<0.7 LORR	5.8	<0.7 LORR	4.3	12	80	14
6678648 24-08-20 BH18/0.4-0.5	SOIL	1.9	14	<0.5 LORR	12	<0.5 LORR	3.3	15	120	22
6678649 24-08-20 BH18/0.6-0.7	SOIL	4.9	38	<0.6 LORR	30	<0.6 LORR	9.4	44	310	59
6678650 24-08-20 BH19/0.0-0.05	SOIL	0.1	0.9	<0.1	0.7	<0.1	0.3	1.0	6.8	1.1
6678653 24-08-20 BH19/0.6-0.7	SOIL	1.7	17	<0.6 LORR	6.6	<0.6 LORR	6.3	18	100	17
6678655 24-08-20 BH20/0.15-0.25	SOIL	0.4	3.2	<0.3 LORR	1.7	<0.3 LORR	1.2	3.5	23	4.1
6678660 24-08-20 BH21/0.15-0.25	SOIL	0.7	7.0	<0.6 LORR	5.0	<0.6 LORR	2.3	7.5	52	8.7
6678666 24-08-20 BH22/0.4-0.5	SOIL	2.8	27	<0.6 LORR	17	<0.6 LORR	9.0	28	190	32
6678668 24-08-20 BH23/0.0-0.05	SOIL	0.8	6.5	<0.7 LORR	3.6	<0.7 LORR	2.0	7.2	46	8.2
6678671 24-08-20 BH23/0.6-0.7	SOIL	2.8	21	<0.6 LORR	19	<0.6 LORR	5.9	23	180	34
6678675 24-08-20 BH24/0.4-0.5	SOIL	1.1	14	<0.6 LORR	8.8	<0.6 LORR	5.2	15	97	15
6678677 24-08-20 BH25/0.0-0.05	SOIL	<0.7 LORR	4.4	<0.7 LORR	3.6	<0.7 LORR	1.4	4.9	34	5.2
6678679 24-08-20 BH25/0.4-0.5	SOIL	2.3	24	<0.6 LORR	15	<0.6 LORR	8.3	25	170	28
6678680 24-08-20 BH525/0.4-0.5	SOIL	2.8	26	<0.6 LORR	17	<0.6 LORR	9.1	28	180	31
6678681 24-08-20 BH25/0.6-0.7	SOIL	1.3	11	<0.6 LORR	5.7	<0.6 LORR	3.6	12	77	14
6678684 24-08-20 BH26/0.4-0.5	SOIL	1.0	8.3	<0.7 LORR	6.2	<0.7 LORR	2.5	8.7	64	11

LORR

Limit of Reporting has been raised due to high moisture content, insufficient sample or matrix interference.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page 17 of 37 Page: Batch No: 20-40358

Report Number: 844277

Client: Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

Soil PA	\ LI		Analysis:	PAH	PAH
Sample		ate Your Ref	Component: Units: Sample Type	BaP TEQ (half LOR) mg/kg	BaP TEQ (LOR) mg/kg
6678572	24-08-20	BH01/0-0.05	SOIL	0.3	0.4
6678574	24-08-20	BH01/0.4-0.5	SOIL	6.8	6.8
6678575	24-08-20	BH501/0.4-0.5	SOIL	7.0	7.0
6678576	24-08-20	BH01/0.6-0.7	SOIL	7.2	7.5
6678578	24-08-20	BH01/1.4-1.5	SOIL	190	190
6678579	24-08-20	BH03/0-0.05	SOIL	3.6	3.6
6678582	24-08-20	BH03/0.6-0.7	SOIL	57	57
6678583	24-08-20	BH503/0.6-0.7	SOIL	59	59
6678585	24-08-20	BH04/0.15-0.25	SOIL	9.2	9.2
6678588	24-08-20	BH05/0-0.05	SOIL	0.7	0.8
6678589	24-08-20	BH05/0.15-0.25	SOIL	0.9	0.9
6678590	24-08-20	BH05/0.4-0.5	SOIL	12	12
6678593	24-08-20	BH06/0.15-0.25	SOIL	3.4	3.4
6678594	24-08-20	BH06/0.4-0.5	SOIL	31	31
6678598	24-08-20	BH07/0.4-0.5	SOIL	39	39
6678600	24-08-20	BH08/0-0.05	SOIL	6.3	6.3
6678603	24-08-20	BH08/0.6-0.7	SOIL	34	34
6678604	24-08-20	BH09/0-0.05	SOIL	5.0	5.0
6678607	24-08-20	BH09/0.6-0.7	SOIL	13	13
6678609	24-08-20	BH10/0.15-0.25	SOIL	4.7	4.7
6678614	24-08-20	BH11/0.4-0.5	SOIL	34	34
6678617	24-08-20	BH12/0.15-0.25	SOIL	15	15
6678618	24-08-20	BH12/0.4-0.5	SOIL	27	27
6678620	24-08-20	BH13/0-0.05	SOIL	1.6	1.6
6678623	24-08-20	BH13/0.6-0.7	SOIL	12	12
6678624	24-08-20	BH14/0-0.05	SOIL	3.1	3.1
6678626	24-08-20	BH14/0.4-0.5	SOIL	51	51
6678629	24-08-20	BH02/0.15-0.25	SOIL	20	20
6678632	24-08-20	BH02/0.9-1.0	SOIL	2.1	2.1
6678633	24-08-20	BH02/1.4-1.5	SOIL	0.1	0.2
6678635	24-08-20	BH15/0.15-0.25	SOIL	3.1	3.1
6678639	24-08-20	BH16/0.15-0.25	SOIL	8.8	8.8
6678640	24-08-20	BH16/0.4-0.5	SOIL	29	29

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page: Page 18 of 37 Batch No: 20-40358 844277

Report Number:

Client:

Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

				PAH	PAH
				BaP TEQ (half LOR)	BaP TEQ (LOR)
				mg/kg	mg/kg
6678644	24-08-20	BH17/0.4-0.5	SOIL	25	25
6678645	24-08-20	BH17/0.6-0.7	SOIL	8.9	8.9
6678646	24-08-20	BH18/0.0-0.05	SOIL	14	14
6678648	24-08-20	BH18/0.4-0.5	SOIL	22	22
6678649	24-08-20	BH18/0.6-0.7	SOIL	59	59
6678650	24-08-20	BH19/0.0-0.05	SOIL	1.1	1.1
6678653	24-08-20	BH19/0.6-0.7	SOIL	17	17
6678655	24-08-20	BH20/0.15-0.25	SOIL	4.1	4.1
6678660	24-08-20	BH21/0.15-0.25	SOIL	8.7	8.7
6678666	24-08-20	BH22/0.4-0.5	SOIL	32	32
6678668	24-08-20	BH23/0.0-0.05	SOIL	8.2	8.2
6678671	24-08-20	BH23/0.6-0.7	SOIL	34	34
6678675	24-08-20	BH24/0.4-0.5	SOIL	15	15
6678677	24-08-20	BH25/0.0-0.05	SOIL	5.6	5.9
6678679	24-08-20	BH25/0.4-0.5	SOIL	28	28
6678680	24-08-20	BH525/0.4-0.5	SOIL	31	31
6678681	24-08-20	BH25/0.6-0.7	SOIL	14	14

Soil O.C. Pesticides	Analysis:	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP
Sample Sampled Date Your Ref	Component: Units: Sample Type	BHC (alpha) mg/kg	a-Endosulphan mg/kg	Aldrin mg/kg	BHC (beta) mg/kg	b-Endosulphan mg/kg	Chlordane mg/kg	cis-Chlordane mg/kg	trans-Chlordane mg/kg	BHC (delta) mg/kg
6678578 24-08-20 BH01/1.4-1.5	SOIL	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR
6678600 24-08-20 BH08/0-0.05	SOIL	<0.08 LORR	<0.08 LORR	<0.08 LORR	<0.08 LORR	<0.08 LORR	<0.08 LORR	<0.08 LORR	<0.08 LORR	<0.08 LORR
6678609 24-08-20 BH10/0.15-0.25	SOIL	<0.07 LORR	<0.07 LORR	<0.07 LORR	<0.07 LORR	<0.07 LORR	<0.07 LORR	<0.07 LORR	<0.07 LORR	<0.07 LORR
6678623 24-08-20 BH13/0.6-0.7	SOIL	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR
6678645 24-08-20 BH17/0.6-0.7	SOIL	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR
6678648 24-08-20 BH18/0.4-0.5	SOIL	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR
6678660 24-08-20 BH21/0.15-0.25	SOIL	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR
6678677 24-08-20 BH25/0.0-0.05	SOIL	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR
6678684 24-08-20 BH26/0.4-0.5	SOIL	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR

LORR

Limit of Reporting has been raised due to high moisture content, insufficient sample or matrix interference.

11

SOIL

11

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Calculated results are based on raw data.

6678684 24-08-20 BH26/0.4-0.5

 Page:
 Page 19 of 37

 Batch No:
 20-40358

Report Number: 844277
Client: Landse

Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

Soil O.C. Pesticides	Analysis:	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP
Sample Sampled Date Your Ref	Component: Units: Sample Type	DDD mg/kg	DDE mg/kg	DDT mg/kg	Dieldrin mg/kg	Endosulphan mg/kg	Endosulfan Sulfate mg/kg	Endrin mg/kg	Endrin Aldehyde mg/kg	Endrin Ketone mg/kg
6678578 24-08-20 BH01/1.4-1.5	SOIL	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR
6678600 24-08-20 BH08/0-0.05	SOIL	<0.08 LORR	<0.08 LORR	<0.08 LORR	<0.08 LORR	<0.08 LORR	<0.08 LORR	<0.08 LORR	<0.08 LORR	<0.08 LORR
6678609 24-08-20 BH10/0.15-0.25	SOIL	<0.07 LORR	<0.07 LORR	<0.07 LORR	<0.07 LORR	<0.07 LORR	<0.07 LORR	<0.07 LORR	<0.07 LORR	<0.07 LORR
6678623 24-08-20 BH13/0.6-0.7	SOIL	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR
6678645 24-08-20 BH17/0.6-0.7	SOIL	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR
6678648 24-08-20 BH18/0.4-0.5	SOIL	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR
6678660 24-08-20 BH21/0.15-0.25	SOIL	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR
6678677 24-08-20 BH25/0.0-0.05	SOIL	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR
6678684 24-08-20 BH26/0.4-0.5	SOIL	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR

LORR

 $\ \, \text{Limit of Reporting has been raised due to high moisture content, insufficient sample or matrix} \\$

interference.

Analysis: OCP OCP OCP

Soil O.C. Pes	sticides	Analysis:	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP
	I Date Your Ref	Component: Units: Sample Type	HexaChlorBenzene mg/kg	Heptchlor Epoxide mg/kg	Heptachlor mg/kg	Lindane mg/kg	Methoxychlor mg/kg	Oxychlordane mg/kg	DDD+DDE+DDT mg/kg	Aldrin and Dieldrin mg/kg
6678578 24-08-2	0 BH01/1.4-1.5	SOIL	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR
6678600 24-08-2	0 BH08/0-0.05	SOIL	<0.08 LORR	<0.08 LORR	<0.08 LORR	<0.08 LORR	<0.08 LORR	<0.08 LORR	<0.08 LORR	<0.08 LORR
6678609 24-08-2	0 BH10/0.15-0.25	SOIL	<0.07 LORR	<0.07 LORR	<0.07 LORR	<0.07 LORR	<0.07 LORR	<0.07 LORR	<0.07 LORR	<0.07 LORR
6678623 24-08-2	0 BH13/0.6-0.7	SOIL	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR
6678645 24-08-2	0 BH17/0.6-0.7	SOIL	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR
6678648 24-08-2	0 BH18/0.4-0.5	SOIL	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR
6678660 24-08-2	0 BH21/0.15-0.25	SOIL	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR
6678677 24-08-2	0 BH25/0.0-0.05	SOIL	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR
6678684 24-08-2	0 BH26/0.4-0.5	SOIL	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR

LORR

Limit of Reporting has been raised due to high moisture content, insufficient sample or matrix interference.

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page: Page 20 of 37 Batch No: 20-40358

Report Number:

844277

Client:

Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

0 " 000		Analysis:	PCB	PCB						
Soil PCBs Sample Sampled Da	te Your Ref	Component: Units: Sample Type	Aroclor 1016 mg/kg	Aroclor 1221 mg/kg	Aroclor 1232 mg/kg	Aroclor 1242 mg/kg	Aroclor 1248 mg/kg	Aroclor 1254 mg/kg	Aroclor 1260 mg/kg	Total PCBs mg/kg
6678578 24-08-20	BH01/1.4-1.5	SOIL	<0.6 LORR	<0.6 LORR						
6678600 24-08-20	BH08/0-0.05	SOIL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
6678609 24-08-20	BH10/0.15-0.25	SOIL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
6678623 24-08-20	BH13/0.6-0.7	SOIL	<0.6 LORR	<0.6 LORR						
6678645 24-08-20	BH17/0.6-0.7	SOIL	<0.6 LORR	<0.6 LORR						
6678648 24-08-20	BH18/0.4-0.5	SOIL	<0.5 LORR	<0.5 LORR						
6678660 24-08-20	BH21/0.15-0.25	SOIL	<0.6 LORR	<0.6 LORR						
6678677 24-08-20	BH25/0.0-0.05	SOIL	<0.7 LORR	<0.7 LORR						
6678684 24-08-20	BH26/0.4-0.5	SOIL	<0.7 LORR	<0.7 LORR						

LORR

Limit of Reporting has been raised due to high moisture content, insufficient sample or matrix

interference.

Soil CHO	^e	Analysis:	CHC	CHC	CHC	CHC	CHC	CHC	CHC	CHC	CHC
	ampled Date Your Ref	Component: Units: Sample Type	1234TetraChlBenz mg/kg	1235TetraChlBenz mg/kg	123TriChloroBenz mg/kg	1245TetraChlBenz mg/kg	124TriChloroBenz mg/kg	12DiChloroBenz mg/kg	135TriChloroBenz mg/kg	13DiChloroBenz mg/kg	14DiChloroBenz mg/kg
6678578 2	24-08-20 BH01/1.4-1.5	SOIL	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR				
6678600 2	24-08-20 BH08/0-0.05	SOIL	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR				
6678609 2	24-08-20 BH10/0.15-0.25	SOIL	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR				
6678623 2	24-08-20 BH13/0.6-0.7	SOIL	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR				
6678645 2	24-08-20 BH17/0.6-0.7	SOIL	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR				
6678648 2	24-08-20 BH18/0.4-0.5	SOIL	<0.5 LORR	<0.5 LORR	<0.5 LORR	<0.5 LORR	<0.5 LORR				
6678660 2	24-08-20 BH21/0.15-0.25	SOIL	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR				
6678677 2	24-08-20 BH25/0.0-0.05	SOIL	<0.7 LORR	<0.7 LORR	<0.7 LORR	<0.7 LORR	<0.7 LORR				
6678684 2	24-08-20 BH26/0.4-0.5	SOIL	<0.7 LORR	<0.7 LORR	<0.7 LORR	<0.7 LORR	<0.7 LORR				

LORR

Limit of Reporting has been raised due to high moisture content, insufficient sample or matrix

interference.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page: Page 21 of 37 Batch No: 20-40358

Report Number:

Client:

844277

Landserv Pty Ltd

Client Program Ref:

M0790 Wattie Watson ESA

		Analysis:	CHC	CHC	CHC	CHC	CHC	CHC	CHC	CHC
Soil CHCs		Commonanti	2ChloroNaphthlene	Benzal Chloride	BenzoTriChloride	Benzylcl	HexaChloroEthane	HexaChlButadiene	HexaClCyclPenten	PentaChlBenzene
Sample Sampled D	ate Your Ref	Component: Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Sample Type	3 3	3 3	3 3	3 3		3 3	3 3	3 3
6678578 24-08-20	BH01/1.4-1.5	SOIL	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR
6678600 24-08-20	BH08/0-0.05	SOIL	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR
6678609 24-08-20	BH10/0.15-0.25	SOIL	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR	<0.2 LORR
6678623 24-08-20	BH13/0.6-0.7	SOIL	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR
6678645 24-08-20	BH17/0.6-0.7	SOIL	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR
6678648 24-08-20	BH18/0.4-0.5	SOIL	<0.5 LORR	<0.5 LORR	<0.5 LORR	<0.5 LORR	<0.5 LORR	<0.5 LORR	<0.5 LORR	<0.5 LORR
6678660 24-08-20	BH21/0.15-0.25	SOIL	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR
6678677 24-08-20	BH25/0.0-0.05	SOIL	<0.7 LORR	<0.7 LORR	<0.7 LORR	<0.7 LORR	<0.7 LORR	<0.7 LORR	<0.7 LORR	<0.7 LORR
6678684 24-08-20	BH26/0.4-0.5	SOIL	<0.7 LORR	<0.7 LORR	<0.7 LORR	<0.7 LORR	<0.7 LORR	<0.7 LORR	<0.7 LORR	<0.7 LORR

LORR

Limit of Reporting has been raised due to high moisture content, insufficient sample or matrix interference.

Phenols (Halogenated)	Analysis:	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)
Sample Sampled Date Your Ref	Component: Units: Sample Type	4Chlor3MethylPhnl mg/kg	2-ChloroPhenol mg/kg	24DiChloroPhenol mg/kg	2,6DiChloroPhenol mg/kg	PentaChlorPhenol mg/kg	2345TetraChloPhnl mg/kg	2346TetraChloPhnl mg/kg	2356TetraChloPhnl mg/kg	245TriChlorPhenol mg/kg
6678578 24-08-20 BH01/1.4-1.5	SOIL	<10 LORR	<10 LORR	<10 LORR	<10 LORR	<10 LORR	<10 LORR	<10 LORR	<10 LORR	<10 LORR
6678600 24-08-20 BH08/0-0.05	SOIL	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR
6678609 24-08-20 BH10/0.15-0.25	SOIL	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR
6678623 24-08-20 BH13/0.6-0.7	SOIL	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR
6678645 24-08-20 BH17/0.6-0.7	SOIL	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR
6678648 24-08-20 BH18/0.4-0.5	SOIL	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR
6678660 24-08-20 BH21/0.15-0.25	SOIL	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR
6678677 24-08-20 BH25/0.0-0.05	SOIL	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR
6678684 24-08-20 BH26/0 4-0 5	SOIL	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR	<2 LORR

LORR

Limit of Reporting has been raised due to high moisture content, insufficient sample or matrix interference.

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 Page:
 Page 22 of 37

 Batch No:
 20-40358

 Page 27 of 37
 244377

Report Number: 844277

Client: Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

Pheno	ls (Halo	genated)	Analysis:	Phenols(Halo)	Phenols(Halo)	
Sample	Sampled D	ate Your Ref	Component: Units: Sample Type	246TriChlorPhenol mg/kg	Total Phenols (Halo) mg/kg	
6678578	24-08-20	BH01/1.4-1.5	SOIL	<10 LORR	<10 LORR	
6678600	24-08-20	BH08/0-0.05	SOIL	<2 LORR	<2 LORR	
6678609	24-08-20	BH10/0.15-0.25	SOIL	<2 LORR	<2 LORR	
6678623	24-08-20	BH13/0.6-0.7	SOIL	<2 LORR	<2 LORR	
6678645	24-08-20	BH17/0.6-0.7	SOIL	<2 LORR	<2 LORR	
6678648	24-08-20	BH18/0.4-0.5	SOIL	<2 LORR	<2 LORR	
6678660	24-08-20	BH21/0.15-0.25	SOIL	<2 LORR	<2 LORR	
6678677	24-08-20	BH25/0.0-0.05	SOIL	<2 LORR	<2 LORR	
6678684	24-08-20	BH26/0.4-0.5	SOIL	<2 LORR	<2 LORR	

LORR

Limit of Reporting has been raised due to high moisture content, insufficient sample or matrix interference.

Phonolo (Non Hologonated)	Analysis:	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)
Phenols (Non Halogenated) Sample Sampled Date Your Ref	Component: Units: Sample Type	Phenol mg/kg	Total Cresols mg/kg	2,4DiMethylPhenol mg/kg	2,4-Dinitrophenol mg/kg	2Mthyl46DiNitrPhnl mg/kg	2-NitroPhenol mg/kg	4-NitroPhenol mg/kg	2CyHxl46DiNitPhnl mg/kg	Dinoseb mg/kg
6678578 24-08-20 BH01/1.4-1.5	SOIL	<10 LORR	<20 LORR	<10 LORR	<600 LORR	<200 LORR	<10 LORR	<10 LORR	<600 LORR	<200 LORR
6678600 24-08-20 BH08/0-0.05	SOIL	<2 LORR	<5 LORR	<2 LORR	<150 LORR	<50 LORR	<2 LORR	<2 LORR	<150 LORR	<50 LORR
6678609 24-08-20 BH10/0.15-0.25	SOIL	<2 LORR	<5 LORR	<2 LORR	<150 LORR	<50 LORR	<2 LORR	<2 LORR	<150 LORR	<50 LORR
6678623 24-08-20 BH13/0.6-0.7	SOIL	<2 LORR	<5 LORR	<2 LORR	<150 LORR	<50 LORR	<2 LORR	<2 LORR	<150 LORR	<50 LORR
6678645 24-08-20 BH17/0.6-0.7	SOIL	<2 LORR	<5 LORR	<2 LORR	<150 LORR	<50 LORR	<2 LORR	<2 LORR	<150 LORR	<50 LORR
6678648 24-08-20 BH18/0.4-0.5	SOIL	<2 LORR	<5 LORR	<2 LORR	<150 LORR	<50 LORR	<2 LORR	<2 LORR	<150 LORR	<50 LORR
6678660 24-08-20 BH21/0.15-0.25	SOIL	<2 LORR	<5 LORR	<2 LORR	<150 LORR	<50 LORR	<2 LORR	<2 LORR	<150 LORR	<50 LORR
6678677 24-08-20 BH25/0.0-0.05	SOIL	<2 LORR	<5 LORR	<2 LORR	<150 LORR	<50 LORR	<2 LORR	<2 LORR	<150 LORR	<50 LORR
6678684 24-08-20 BH26/0.4-0.5	SOIL	<2 LORR	<5 LORR	<2 LORR	<150 LORR	<50 LORR	<2 LORR	<2 LORR	<150 LORR	<50 LORR

LORR

Limit of Reporting has been raised due to high moisture content, insufficient sample or matrix interference.

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page: Page 23 of 37 Batch No: 20-40358 844277

Report Number:

Client: Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

Pheno	ls (Non	Halogenated)	4	Analysis:	Phenols(NonHalo)
Sample	Sampled Da	•	U	Component: Inits: Sample Type	Total Phenols(NonH) mg/kg
6678578	24-08-20	BH01/1.4-1.5		SOIL	<600 LORR
6678600	24-08-20	BH08/0-0.05		SOIL	<150 LORR
6678609	24-08-20	BH10/0.15-0.25		SOIL	<150 LORR
6678623	24-08-20	BH13/0.6-0.7		SOIL	<150 LORR
6678645	24-08-20	BH17/0.6-0.7		SOIL	<150 LORR
6678648	24-08-20	BH18/0.4-0.5		SOIL	<150 LORR
6678660	24-08-20	BH21/0.15-0.25		SOIL	<150 LORR
6678677	24-08-20	BH25/0.0-0.05		SOIL	<150 LORR
6678684	24-08-20	BH26/0.4-0.5		SOIL	<150 LORR

LORR

Limit of Reporting has been raised due to high moisture content, insufficient sample or matrix interference.

Soil Halo. Volatiles	Analysis:	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL
Sample Sampled Date Your Ref	Component: Units: Sample Type	1112TetraClEthane mg/kg	1122TetraClEthane mg/kg	1,1DiChloroEthane mg/kg	1,1DiChloroEthene mg/kg	11DiChlorPropene mg/kg	123TriChlPropane mg/kg	12DiBr3ChlPrpane mg/kg	12DiChlorEthene[c] mg/kg	12DiChlorEthene[t] mg/kg
6678578 24-08-20 BH01/1.4-1.5	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678600 24-08-20 BH08/0-0.05	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678609 24-08-20 BH10/0.15-0.25	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678623 24-08-20 BH13/0.6-0.7	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678645 24-08-20 BH17/0.6-0.7	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678648 24-08-20 BH18/0.4-0.5	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678660 24-08-20 BH21/0.15-0.25	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678677 24-08-20 BH25/0.0-0.05	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678684 24-08-20 BH26/0.4-0.5	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 Page:
 Page 24 of 37

 Batch No:
 20-40358

Report Number:

844277

Client:

Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

Soil Halo. Vo	latilos	Analysis:	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL
Sample Sampled Date Your Ref		Component: Units: Sample Type	12DiChloroEthane mg/kg	12 DiChloPropane mg/kg	13DiChlorPropane mg/kg	13DiChlPropene[c] mg/kg	13DiChlPropene[t] mg/kg	22DiChlorPropane mg/kg	2-ChloroToluene mg/kg	4-ChloroToluene mg/kg	BromChloMethane mg/kg
6678578 24-08-2	0 BH01/1.4-1.5	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678600 24-08-2	0 BH08/0-0.05	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678609 24-08-2	0 BH10/0.15-0.25	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678623 24-08-2	0 BH13/0.6-0.7	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678645 24-08-2	0 BH17/0.6-0.7	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678648 24-08-2	0 BH18/0.4-0.5	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678660 24-08-2	0 BH21/0.15-0.25	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678677 24-08-20	0 BH25/0.0-0.05	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678684 24-08-2	0 BH26/0.4-0.5	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Soil Halo. Vo	latiles	Analysis:	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL
	Date Your Ref	Component: Units: Sample Type	BroDiChloMethane mg/kg	BromoBenzene mg/kg	Bromoform mg/kg	CarbonTetChloride mg/kg	Chloroform mg/kg	ChloroBenzene mg/kg	DiBroChloMethane mg/kg	DiBromoMethane mg/kg	12DiBromoEthane mg/kg
6678578 24-08-2	0 BH01/1.4-1.5	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678600 24-08-2	0 BH08/0-0.05	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678609 24-08-2	0 BH10/0.15-0.25	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678623 24-08-2	0 BH13/0.6-0.7	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678645 24-08-2	0 BH17/0.6-0.7	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678648 24-08-2	0 BH18/0.4-0.5	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678660 24-08-2	0 BH21/0.15-0.25	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678677 24-08-2	0 BH25/0.0-0.05	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

<0.5

<0.5

< 0.5

< 0.5

< 0.5

<0.5

<0.5

< 0.5

< 0.5

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

SOIL

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Calculated results are based on raw data.

6678684 24-08-20 BH26/0.4-0.5

Page 25 of 37 Page: Batch No: 20-40358 844277

Report Number:

Landserv Pty Ltd

Client:

Client Program Ref: M0790 Wattie Watson ESA

Soil Halo. Volatil	loe	Analysis:	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL
Sample Sampled Date		Component: Units: Sample Type	DiChloroMethane mg/kg	TriChloFluMethane mg/kg	TetraChloroEthene mg/kg	Vinyl Chloride mg/kg	111TriChlorEthane mg/kg	112TriChlorEthane mg/kg	TriChloroEthene mg/kg
6678578 24-08-20 B	H01/1.4-1.5	SOIL	<1	<2	<0.5	<1	<0.5	<0.5	<0.5
6678600 24-08-20 B	H08/0-0.05	SOIL	<1	<2	<0.5	<1	<0.5	<0.5	<0.5
6678609 24-08-20 B	H10/0.15-0.25	SOIL	<1	<2	<0.5	<1	<0.5	<0.5	<0.5
6678623 24-08-20 B	H13/0.6-0.7	SOIL	<1	<2	<0.5	<1	<0.5	<0.5	<0.5
6678645 24-08-20 B	H17/0.6-0.7	SOIL	<1	<2	<0.5	<1	<0.5	<0.5	<0.5
6678648 24-08-20 B	H18/0.4-0.5	SOIL	<1	<2	<0.5	<1	<0.5	<0.5	<0.5
6678660 24-08-20 B	H21/0.15-0.25	SOIL	<1	<2	<0.5	<1	<0.5	<0.5	<0.5
6678677 24-08-20 B	H25/0.0-0.05	SOIL	<1	<2	<0.5	<1	<0.5	<0.5	<0.5
6678684 24-08-20 B	H26/0.4-0.5	SOIL	<1	<2	<0.5	<1	<0.5	<0.5	<0.5

Subco	ntracted	I	Analysis:	Asbestos		
Sample	Sampled Da	-	Component: Units: Sample Type			
6678572	24-08-20	BH01/0-0.05	SOIL	Not Detected		
6678578	24-08-20	BH01/1.4-1.5	SOIL	Not Detected		
6678585	24-08-20	BH04/0.15-0.25	SOIL	Not Detected		
6678594	24-08-20	BH06/0.4-0.5	SOIL	Not Detected		
6678598	24-08-20	BH07/0.4-0.5	SOIL	Not Detected		
6678604	24-08-20	BH09/0-0.05	SOIL	Not Detected		
6678607	24-08-20	BH09/0.6-0.7	SOIL	Not Detected		
6678614	24-08-20	BH11/0.4-0.5	SOIL	Not Detected		
6678620	24-08-20	BH13/0-0.05	SOIL	Not Detected		
6678632	24-08-20	BH02/0.9-1.0	SOIL	Not Detected		
6678640	24-08-20	BH16/0.4-0.5	SOIL	Not Detected		
6678646	24-08-20	BH18/0.0-0.05	SOIL	Not Detected		
6678657	24-08-20	BH20/PACM 0.4-0.5	SOIL	Chrysotile Detecte		
6678668	24-08-20	BH23/0.0-0.05	SOIL	Not Detected		
6678674	24-08-20	BH24 ACM 0.2	SOIL	Chrysotile Detecte		
6678675	24-08-20	BH24/0.4-0.5	SOIL	Not Detected		
6678684	24-08-20	BH26/0.4-0.5	SOIL	Not Detected		

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 Page:
 Page 26 of 37

 Batch No:
 20-40358

 Page 27
 20-4037

Report Number:

844277

Client: Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

Quality Control

Soil BTEXN		BTEXN	BTEXN	BTEXN	BTEXN	BTEXN	BTEXN	BTEXN	BTEXN
JOH DI LAN		Benzene	Toluene	Ethyl Benzene	Xylene - m&p	Xylene - O	Naphthalene	Total Xylenes	BTEX (Sum)
6677851 DUPLICATE	Sample Value	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<1	<1
6677851 DUPLICATE	Duplicate Value	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<1	<1
6677851 DUPLICATE	% RPD	0	0	0	0	0	0	0	0
6677855 SPIKE	Sample Value	<0.5	<0.5	<0.5	<1	<0.5	<0.5		
6677855 SPIKE	Expected Value	4.7	4.7	4.7	9.3	4.7	4.7		
6677855 SPIKE	% Recovery	99.6	103	96.1	114	105	74.1		
6680019 BLANK	Value	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<1	<1
6678677 DUPLICATE	Sample Value	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<1	<1
6678677 DUPLICATE	Duplicate Value	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<1	<1
6678677 DUPLICATE	% RPD	0	0	0	0	0	0	0	0
6678684 SPIKE	Sample Value	<0.5	<0.5	<0.5	<1	<0.5			
6678684 SPIKE	Expected Value	5.2	5.2	5.2	10	5.2			
6678684 SPIKE	% Recovery	80.1	75.5	71.0	84.4	83.5			
6681573 BLANK	Value	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<1	<1

Soil CHCs	CHCs	CHC	CHC	CHC	CHC	CHC	CHC	CHC	CHC	CHC
0011 01103		1234TetraChlBenz	1235TetraChlBenz	123TriChloroBenz	1245TetraChlBenz	124TriChloroBenz	12DiChloroBenz	135TriChloroBenz	13DiChloroBenz	14DiChloroBenz
6678645 DUPLICATE	Sample Value	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR				
6678645 DUPLICATE	Duplicate Value	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR				
6678645 DUPLICATE	% RPD	0	0	0	0	0	0	0	0	0
6678648 SPIKE	Sample Value	<0.5 LORR		<0.5 LORR	<0.5 LORR	<0.5 LORR	<0.5 LORR	<0.5 LORR	<0.5 LORR	<0.5 LORR
6678648 SPIKE	Expected Value	1.3		1.3	2.7	1.3	1.3	1.3	1.3	1.3
6678648 SPIKE	% Recovery	110		100	106	114	120	110	110	120
6681679 BLANK	Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6677855 DUPLICATE	Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6677855 DUPLICATE	Duplicate Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6677855 DUPLICATE	% RPD	0	0	0	0	0	0	0	0	0
6677857 SPIKE	Sample Value	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6677857 SPIKE	Expected Value	1.3		1.3	2.6	1.3	1.3	1.3	1.3	1.3
6677857 SPIKE	% Recovery	109		96.6	112	100	81.2	97.8	85.4	92.4
6682144 BLANK	Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page 27 of 37 Page: Batch No: 20-40358 844277

Report Number:

Client:

Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

Soil CHCs		CHC	CHC	CHC	CHC	CHC	CHC	CHC	CHC
Joil Crics		2ChloroNaphthlene	Benzal Chloride	BenzoTriChloride	Benzylcl	HexaChloroEthane	HexaChlButadiene	HexaClCyclPenten	PentaChlBenzene
6678645 DUPLICATE	Sample Value	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR
6678645 DUPLICATE	Duplicate Value	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR	<0.6 LORR
6678645 DUPLICATE	% RPD	0	0	0	0	0	0	0	0
6678648 SPIKE	Sample Value	<0.5 LORR	<0.5 LORR	<0.5 LORR	<0.5 LORR	<0.5 LORR	<0.5 LORR		<0.5 LORR
6678648 SPIKE	Expected Value	1.3	1.3	1.3	1.3	1.3	1.3		1.3
6678648 SPIKE	% Recovery	104	100	112	104	122	118		110
6681679 BLANK	Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6677855 DUPLICATE	Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6677855 DUPLICATE	Duplicate Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6677855 DUPLICATE	% RPD	0	0	0	0	0	0	0	0
6677857 SPIKE	Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6677857 SPIKE	Expected Value	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
6677857 SPIKE	% Recovery	115	96.0	91.4	98.0	93.8	91.4	71.8	102
6682144 BLANK	Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL
		IIVOL	1110L	1.1702	11100	11100	11100	11100	11100

Soil Halo. Volatiles		HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL
John Halo. Volatiles		1112TetraClEthane	1122TetraClEthane	1,1DiChloroEthane	1,1DiChloroEthene	11DiChlorPropene	123TriChlPropane	12DiBr3ChlPrpane	12DiChlorEthene[c]	12DiChlorEthene[t]
6678600 DUPLICATE Sample V	alue alue	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678600 DUPLICATE Duplicate	Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678600 DUPLICATE % RPD		0	0	0	0	0	0	0	0	0
6678578 SPIKE Sample Va	alue	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5
6678578 SPIKE Expected	Value	4.3	4.3	4.3	4.3	4.3	4.3		4.3	4.3
6678578 SPIKE % Recove	ery	80.0	93.0	92.0	90.6	83.6	88.9		85.0	85.7
6680190 BLANK Value		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678645 DUPLICATE Sample V	'alue	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678645 DUPLICATE Duplicate	Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678645 DUPLICATE % RPD		0	0	0	0	0	0	0	0	0
6681729 BLANK Value		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Soil Halo. Volatiles	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL
Con riaio. Voluntes	12DiChloroEthane	12 DiChloPropane	13DiChlorPropane	13DiChlPropene[c]	13DiChlPropene[t]	22DiChlorPropane	2-ChloroToluene	4-ChloroToluene	BromChloMethane
6678600 DUPLICATE Sample Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678600 DUPLICATE Duplicate Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678600 DUPLICATE % RPD	0	0	0	0	0	0	0	0	0
6678578 SPIKE Sample Value	<0.5	<0.5	<0.5				<0.5	<0.5	<0.5
6678578 SPIKE Expected Value	4.3	4.3	4.3				4.3	4.3	4.3

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page 28 of 37 Page: Batch No: 20-40358

Report Number:

844277

Client:

Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

		HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL
		12DiChloroEthane	12 DiChloPropane	13DiChlorPropane	13DiChlPropene[c]	13DiChlPropene[t]	22DiChlorPropane	2-ChloroToluene	4-ChloroToluene	BromChloMethane
6678578 SPIKE	% Recovery	102	93.2	99.8				88.7	83.1	92.2
6680190 BLANK	Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678645 DUPLICATE	Sample Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678645 DUPLICATE	Duplicate Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678645 DUPLICATE	% RPD	0	0	0	0	0	0	0	0	0
6681729 BLANK	Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Soil Halo, Volatiles	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL
Con ridio. Volumos	BroDiChloMethane	BromoBenzene	Bromoform	CarbonTetChloride	Chloroform	ChloroBenzene	DiBroChloMethane	DiBromoMethane	12DiBromoEthane
6678600 DUPLICATE Sample Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678600 DUPLICATE Duplicate Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678600 DUPLICATE % RPD	0	0	0	0	0	0	0	0	0
6678578 SPIKE Sample Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5
6678578 SPIKE Expected Value	4.3	4.3	4.3	4.3	4.3	4.3		4.3	4.3
6678578 SPIKE % Recovery	85.3	86.1	78.5	76.7	98.0	92.1		93.3	86.5
6680190 BLANK Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678645 DUPLICATE Sample Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678645 DUPLICATE Duplicate Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6678645 DUPLICATE % RPD	0	0	0	0	0	0	0	0	0
6681729 BLANK Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Soil Halo. Volatiles	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL
Soli Haio. Volatiles	DiChloroMethane	TriChloFluMethane	TetraChloroEthene	Vinyl Chloride	111TriChlorEthane	112TriChlorEthane	TriChloroEthene
6678600 DUPLICATE Sample Value	<1	<2	<0.5	<1	<0.5	<0.5	<0.5
6678600 DUPLICATE Duplicate Value	<1	<2	<0.5	<1	<0.5	<0.5	<0.5
6678600 DUPLICATE % RPD	0	0	0	0	0	0	0
6678578 SPIKE Sample Value	<1	<2	<0.5	<1	<0.5	<0.5	<0.5
6678578 SPIKE Expected Value	4.3	4.3	4.3	4.3	4.3	4.3	4.3
6678578 SPIKE % Recovery	89.7	92.2	88.8	105	83.6	93.9	93.3
6680190 BLANK Value	<1	<2	<0.5	<1	<0.5	<0.5	<0.5
6678645 DUPLICATE Sample Value	<1	<2	<0.5	<1	<0.5	<0.5	<0.5
6678645 DUPLICATE Duplicate Value	<1	<2	<0.5	<1	<0.5	<0.5	<0.5
6678645 DUPLICATE % RPD	0	0	0	0	0	0	0
6681729 BLANK Value	<1	<2	<0.5	<1	<0.5	<0.5	<0.5

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page 29 of 37 Page: Batch No: 20-40358

Report Number: 844277 Client: Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

Soil MA	ΔН		MAH
			Styrene
6678600	DUPLICATE	Sample Value	<0.5
6678600	DUPLICATE	Duplicate Value	<0.5
6678600	DUPLICATE	% RPD	0
6678578	SPIKE	Sample Value	<0.5
6678578	SPIKE	Expected Value	4.3
6678578	SPIKE	% Recovery	83.2
6680194	BLANK	Value	<0.5
6678645	DUPLICATE	Sample Value	<0.5
6678645	DUPLICATE	Duplicate Value	<0.5
6678645	DUPLICATE	% RPD	0
6681732	BLANK	Value	<0.5
6683313	BLANK	Value	<0.5

Metals		MS Total Metals							
Wetais		Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc
6680371 BLANK	Value	<0.001	<0.0002	<0.001	<0.001	<0.001	<0.0001	<0.001	<0.001
6673847 DUPLICATE	Sample Value	<0.001	<0.0002	<0.001	<0.001	<0.001	<0.0001	<0.001	<0.001
6673847 DUPLICATE	Duplicate Value	<0.001	<0.0002	<0.001	<0.001	<0.001	<0.0001	<0.001	<0.001
6673847 DUPLICATE	% RPD	0	0	0	0	0	0	0	0
6643977 SPIKE	Sample Value	<0.001	<0.0002	<0.001	<0.001	<0.001	<0.0001	0.003	0.019
6643977 SPIKE	Expected Value	0.40	0.40	0.40	0.40	0.40	0.0020	0.40	0.42
6643977 SPIKE	% Recovery	105	103	100	97.7	98.3	95.5	98.3	102

Soil O.C. Pesticide	ne .	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP
Joil O.C. Festicide	3 3	BHC (alpha)	a-Endosulphan	Aldrin	BHC (beta)	b-Endosulphan	Chlordane	cis-Chlordane	trans-Chlordane	BHC (delta)
6678645 DUPLICATE S	Sample Value	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR
6678645 DUPLICATE D	Ouplicate Value	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR
6678645 DUPLICATE %	% RPD	0	0	0	0	0	0	0	0	0
6678648 SPIKE Sa	ample Value	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR
6678648 SPIKE Ex	xpected Value	2.7	1.3	1.3	2.4	1.3	2.7	1.3	1.3	2.7
6678648 SPIKE %	6 Recovery	77.0	90.0	80.0	62.2	98.0	78.0	78.0	78.0	97.0
6681696 BLANK V	'alue	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
6677855 DUPLICATE S	Sample Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
6677855 DUPLICATE D	Ouplicate Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
6677855 DUPLICATE %	% RPD	0	0	0	0	0	0	0	0	0
6677857 SPIKE Sa	ample Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 Page:
 Page 30 of 37

 Batch No:
 20-40358

Report Number:

844277

Client:

Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP
	BHC (alpha)	a-Endosulphan	Aldrin	BHC (beta)	b-Endosulphan	Chlordane	cis-Chlordane	trans-Chlordane	BHC (delta)
6677857 SPIKE Expected Value	2.6	1.3	1.3	2.4	1.3	2.6	1.3	1.3	2.6
6677857 SPIKE % Recovery	94.1	68.8	79.0	74.3	70.0	92.4	88.2	85.2	106
6682174 BLANK Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP
Soil O.C. Pesticides	DDD	DDE	DDT	Dieldrin	Endosulphan	Endosulfan Sulfate	Endrin	Endrin Aldehyde	Endrin Ketone
6678645 DUPLICATE Sample Value	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORI
6678645 DUPLICATE Duplicate Value	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LOR
6678645 DUPLICATE % RPD	0	0	0	0	0	0	0	0	0
6678648 SPIKE Sample Value	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR		<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LOR
6678648 SPIKE Expected Value	1.3	1.3	1.3	1.3		1.3	1.3	1.3	1.3
6678648 SPIKE % Recovery	90.0	76.0	60.0	78.0		76.0	88.0	62.0	74.0
6681696 BLANK Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
6677855 DUPLICATE Sample Value	<0.05	0.07	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
6677855 DUPLICATE Duplicate Value	<0.05	0.06	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
6677855 DUPLICATE % RPD	0	17.4	0	0	0	0	0	0	0
6677857 SPIKE Sample Value	<0.05	<0.05	<0.05	<0.05		<0.05		<0.05	<0.05
6677857 SPIKE Expected Value	1.3	1.3	1.3	1.3		1.3		1.3	1.3
6677857 SPIKE % Recovery	69.4	74.6	68.0	69.8		64.8		97.2	86.8
6682174 BLANK Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Soil O.C. Pesticio	dos	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP
Son O.C. Festicit	163	HexaChlorBenzene	Heptchlor Epoxide	Heptachlor	Lindane	Methoxychlor	Oxychlordane	DDD+DDE+DDT	Aldrin and Dieldrin
6678645 DUPLICATE	Sample Value	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR
6678645 DUPLICATE	Duplicate Value	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR
6678645 DUPLICATE	% RPD	0	0	0	0	0	0	0	0
6678648 SPIKE	Sample Value	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR	<0.3 LORR			
6678648 SPIKE	Expected Value	2.2	1.3	1.3	2.7	1.3			
6678648 SPIKE	% Recovery	95.0	72.0	70.0	73.0	74.0			
6681696 BLANK	Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
6677855 DUPLICATE	Sample Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.07	<0.05
6677855 DUPLICATE	Duplicate Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.06	<0.05
6677855 DUPLICATE	% RPD	0	0	0	0	0	0	15.4	0
6677857 SPIKE	Sample Value	<0.05	<0.05	<0.05	<0.05	<0.05			
6677857 SPIKE	Expected Value	2.5	1.3	1.3	2.6	1.3			
6677857 SPIKE	% Recovery	99.7	78.6	79.4	88.1	61.6			

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page 31 of 37 Page: Batch No: 20-40358 844277

Report Number:

Client: Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP
	HexaChlorBenzene	Heptchlor Epoxide	Heptachlor	Lindane	Methoxychlor	Oxychlordane	DDD+DDE+DDT	Aldrin and Dieldrin
6682174 BLANK Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Soil PAH		PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH
SUII PAII		Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene	Benz(b)fluranthen	Benzo(ghi)perylene	Benz(k)fluranthen	Chrysene
6678650 DUPLICATE	Sample Value	<0.1	<0.1	<0.1	0.5	0.7	0.6	0.7	0.6	0.7
6678650 DUPLICATE	Duplicate Value	<0.1	<0.1	<0.1	0.5	0.8	0.7	0.7	0.6	0.7
6678650 DUPLICATE	% RPD	0	0	0	9.2	9.8	8.7	3.8	8.8	7.5
6681681 BLANK	Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6678633 DUPLICATE	Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6678633 DUPLICATE	Duplicate Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6678633 DUPLICATE	% RPD	0	0	0	0	0	0	0	0	0
6681684 BLANK	Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6678645 DUPLICATE	Sample Value	<0.6 LORR	0.6	0.7	3.7	6.2	5.2	5.1	4.5	5.3
6678645 DUPLICATE	Duplicate Value	<0.6 LORR	0.6	0.9	4.9	8.2	6.7	6.6	5.9	6.9
6678645 DUPLICATE	% RPD	0	6.4	23.1	27.8	28.0	25.2	27.1	25.5	26.4
6678648 SPIKE	Sample Value	<0.5 LORR								
6678648 SPIKE	Expected Value	1.3								
6678648 SPIKE	% Recovery	86.0								
6681688 BLANK	Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6677855 DUPLICATE	Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6677855 DUPLICATE	Duplicate Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6677855 DUPLICATE	% RPD	0	0	0	0	0	0	0	0	0
6677857 SPIKE	Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6677857 SPIKE	Expected Value	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
6677857 SPIKE	% Recovery	84.4	92.0	89.2	89.6	84.6	77.6	84.8	87.2	85.0
6682164 BLANK	Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Soil PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH
Ooi i Aii	Dibenz(ah)anthrcn	Fluoranthene	Fluorene	Indeno(123)pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAHs	BaP TEQ (zero)
6678650 DUPLICATE Sample Value	0.1	0.9	<0.1	0.7	<0.1	0.3	1.0	6.8	1.1
6678650 DUPLICATE Duplicate Value	0.1	1.0	<0.1	0.7	<0.1	0.3	1.0	7.1	1.2
6678650 DUPLICATE % RPD	6.1	8.3	0	5.7	0	2.1	6.5	4.3	9.9
6681681 BLANK Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6678633 DUPLICATE Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6678633 DUPLICATE Duplicate Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6678633 DUPLICATE % RPD	0	0	0	0	0	0	0	0	0

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page 32 of 37 Page: Batch No: 20-40358 844277

Report Number:

Client:

Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

		PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH
		Dibenz(ah)anthrcn	Fluoranthene	Fluorene	Indeno(123)pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAHs	BaP TEQ (zero)
6681684 BLANK	Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6678645 DUPLICATE	Sample Value	0.7	8.0	<0.6 LORR	5.1	<0.6 LORR	2.8	8.4	56	8.9
6678645 DUPLICATE	Duplicate Value	1.0	10	<0.6 LORR	6.8	<0.6 LORR	3.3	11	73	12
6678645 DUPLICATE	% RPD	31.6	24.7	0	27.1	0	16.2	26.9	25.6	28.2
6678648 SPIKE	Sample Value			<0.5 LORR		<0.5 LORR				
6678648 SPIKE	Expected Value			1.3		1.3				
6678648 SPIKE	% Recovery			94.0		94.0				
6681688 BLANK	Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6677855 DUPLICATE	Sample Value	<0.1	0.1	<0.1	<0.1	<0.1	0.1	0.1	0.3	<0.1
6677855 DUPLICATE	Duplicate Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6677855 DUPLICATE	% RPD	0	NA	0	0	0	NA	NA	NA	0
6677857 SPIKE	Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
6677857 SPIKE	Expected Value	1.3	1.3	1.3	1.3	1.3	1.3	1.3		
6677857 SPIKE	% Recovery	85.2	86.0	100	106	86.2	87.6	87.4		
6682164 BLANK	Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Soil PAH		PAH	PAH
JOH I AH		BaP TEQ (half LOR)	BaP TEQ (LOR)
6678650 DUPLICATE	Sample Value	1.1	1.1
6678650 DUPLICATE	Duplicate Value	1.2	1.2
6678650 DUPLICATE	% RPD	9.9	9.9
6681681 BLANK	Value	0.1	0.2
6678633 DUPLICATE	Sample Value	0.1	0.2
6678633 DUPLICATE	Duplicate Value	0.1	0.2
6678633 DUPLICATE	% RPD	0.0	0.0
6681684 BLANK	Value	0.1	0.2
6678645 DUPLICATE	Sample Value	8.9	8.9
6678645 DUPLICATE	Duplicate Value	12	12
6678645 DUPLICATE	% RPD	28.2	28.2
6681688 BLANK	Value	0.1	0.2
6677855 DUPLICATE	Sample Value	0.1	0.2
6677855 DUPLICATE	Duplicate Value	0.1	0.2
6677855 DUPLICATE	% RPD	0.0	0.0
6682164 BLANK	Value	0.1	0.2

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page 33 of 37 Page: Batch No: 20-40358

Report Number:

844277

Client:

Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

Soil PCBs		PCB	PCB						
0011 0D9		Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCBs
6678645 DUPLICATE	Sample Value	<0.6 LORR							
6678645 DUPLICATE	Duplicate Value	<0.6 LORR							
6678645 DUPLICATE	% RPD	0	0	0	0	0	0	0	
6678648 SPIKE	Sample Value	<0.5 LORR						<0.5 LORR	
6678648 SPIKE	Expected Value	2.3						2.6	
6678648 SPIKE	% Recovery	76.5						89.5	
6681699 BLANK	Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6677855 DUPLICATE	Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6677855 DUPLICATE	Duplicate Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6677855 DUPLICATE	% RPD	0	0	0	0	0	0	0	0
6677857 SPIKE	Sample Value	<0.1						<0.1	
6677857 SPIKE	Expected Value	2.3						2.2	
6677857 SPIKE	% Recovery	85.6						91.8	
6682178 BLANK	Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Phenols (Haloge	natod)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)
Filefiois (Haloge	nateu)	4Chlor3MethylPhnl	2-ChloroPhenol	24DiChloroPhenol	2,6DiChloroPhenol	PentaChlorPhenol	2345TetraChloPhnl	2346TetraChloPhnl	2356TetraChloPhnl	245TriChlorPhenol
6678645 DUPLICATE	Sample Value	<2	<2	<2	<2	<2	<2	<2	<2	<2
6678645 DUPLICATE	Duplicate Value	<2	<2	<2	<2	<2	<2	<2	<2	<2
6678645 DUPLICATE	% RPD	0	0	0	0	0	0	0	0	0
6678648 SPIKE	Sample Value	<2	<2	<2	<2			<2	<2	<2
6678648 SPIKE	Expected Value	1.3	1.3	1.3	1.3			2.7	1.3	1.3
6678648 SPIKE	% Recovery	84.0	82.0	80.0	88.0			75.0	74.0	84.0
6681705 BLANK	Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6677857 SPIKE	Sample Value	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5
6677857 SPIKE	Expected Value	1.3	1.3	1.3	1.3	1.3			1.3	1.3
6677857 SPIKE	% Recovery	89.8	94.4	74.4	82.4	70.6			72.0	95.4
6677853 DUPLICATE	Sample Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6677853 DUPLICATE	Duplicate Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6677853 DUPLICATE	% RPD	0	0	0	0	0	0	0	0	0
6682157 BLANK	Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Phenols (Halogenated)	Phenols(Halo)	Phenols(Halo)
Therete (Haregeriatea)	246TriChlorPhenol	Total Phenols (Halo)
6678645 DUPLICATE Sample Value	<2	<2
6678645 DUPLICATE Duplicate Value	<2	<2

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page 34 of 37 Page: Batch No: 20-40358

Report Number: 844277 Client:

Landserv Pty Ltd Client Program Ref: M0790 Wattie Watson ESA

		Phenols(Halo)	Phenols(Halo)
		246TriChlorPhenol	Total Phenols (Halo)
6678645 DUPLICATE	% RPD	0	0
6678648 SPIKE	Sample Value	<2	
6678648 SPIKE	Expected Value	1.3	
6678648 SPIKE	% Recovery	76.0	
6681705 BLANK	Value	<0.5	<0.5
6677857 SPIKE	Sample Value	<0.5	
6677857 SPIKE	Expected Value	1.3	
6677857 SPIKE	% Recovery	75.6	
6677853 DUPLICATE	Sample Value	<0.5	<0.5
6677853 DUPLICATE	Duplicate Value	<0.5	<0.5
6677853 DUPLICATE	% RPD	0	0
6682157 BLANK	Value	<0.5	<0.5

Phenols (Non Ha	logonatod)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)
Fileliois (Noil Ha	iogenateu)	Phenol	Total Cresols	2,4DiMethylPhenol	2,4-Dinitrophenol	2Mthyl46DiNitrPhnl	2-NitroPhenol	4-NitroPhenol	2CyHxl46DiNitPhnl	Dinoseb
6678645 DUPLICATE	Sample Value	<2	<5	<2	<150	<50	<2	<2	<150	<50
6678645 DUPLICATE	Duplicate Value	<2	<5	<2	<150	<50	<2	<2	<150	<50
6678645 DUPLICATE	% RPD	0	0	0	0	0	0	0	0	0
6678648 SPIKE	Sample Value	<2	<5	<2			<2			
6678648 SPIKE	Expected Value	1.3	4.0	1.3			1.3			
6678648 SPIKE	% Recovery	104	107	94.0			76.0			
6681702 BLANK	Value	<0.5	<1	<0.5	<30	<10	<0.5	<0.5	<30	<10
6677855 DUPLICATE	Sample Value	<0.5	<1	<0.5	<30	<10	<0.5	<0.5	<30	<10
6677855 DUPLICATE	Duplicate Value	<0.5	<1	<0.5	<30	<10	<0.5	<0.5	<30	<10
6677855 DUPLICATE	% RPD	0	0	0	0	0	0	0	0	0
6677857 SPIKE	Sample Value	<0.5	<1	<0.5			<0.5			
6677857 SPIKE	Expected Value	1.3	3.9	1.3			1.3			
6677857 SPIKE	% Recovery	101	86.7	100			80.4			
6682153 BLANK	Value	<0.5	<1	<0.5	<30	<10	<0.5	<0.5	<30	<10

Phenols (Non Halogenated)	Phenols(NonHalo)
. nonoio (itom naiogenatea)	Total Phenols(NonH)
6678645 DUPLICATE Sample Value	<150
6678645 DUPLICATE Duplicate Value	<150
6678645 DUPLICATE % RPD	0
6681702 BLANK Value	<30

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 Page:
 Page 35 of 37

 Batch No:
 20-40358

 Report Number:
 844277

Report Number: 844277

Client: Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

	Phenols(NonHalo)
	Total Phenols(NonH)
6677855 DUPLICATE Sample Value	<30
6677855 DUPLICATE Duplicate Value	<30
6677855 DUPLICATE % RPD	0
6682153 BLANK Value	<30

Soil Analysis	Moisture	pH	Total Fluoride	Cyanide	Total Cr 6+ DA
3011 Allalysis	Moisture	pH	Total Fluoride	CN	Total Cr6+ DA
6677857 SPIKE Sample Value					<1
6677857 SPIKE Expected Value	ie				20
6677857 SPIKE % Recovery					108
6677857 DUPLICATE Sample Value	•				<1
6677857 DUPLICATE Duplicate Valu	ue				<1
6677857 DUPLICATE % RPD					0
6679871 BLANK Value					<1
6678609 DUPLICATE Sample Value	19				
6678609 DUPLICATE Duplicate Valu	ue 19				
6678609 DUPLICATE % RPD	0.6				
6678609 DUPLICATE Sample Value		7.3			
6678609 DUPLICATE Duplicate Valu	ue	7.3			
6678609 DUPLICATE % RPD		0.4			
6680429 BLANK Value			<100		
6678609 DUPLICATE Sample Value			190		
6678609 DUPLICATE Duplicate Valu	ue		190		
6678609 DUPLICATE % RPD			1.1		
6678645 SPIKE Sample Value				<5	
6678645 SPIKE Expected Value	ie			20	
6678645 SPIKE % Recovery				104	
6678645 DUPLICATE Sample Value	•			<5	
6678645 DUPLICATE Duplicate Valu	ue			<5	
6678645 DUPLICATE % RPD				0	

Soil Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals
	As	Cd	Cr	Cu	Pb	Hg	Мо	Ni	Se
6680869 BLANK Value	<5	<0.2	<5	<5	<5	<0.05	<5	<5	<3
6678623 DUPLICATE Sample Value	17	0.5	29	32	200	0.30	<5	23	<3
6678623 DUPLICATE Duplicate Value	17	0.4	28	30	180	0.25	<5	22	<3

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page 36 of 37 Page: Batch No: 20-40358

Report Number:

Client:

844277

Landserv Pty Ltd

Client Program Ref:

M0790 Wattie Watson ESA

		MS Total Metals								
		As	Cd	Cr	Cu	Pb	Hg	Мо	Ni	Se
6678623 DUPLICAT	E % RPD	3.4	8.6	3.3	8.5	10.4	17.1	0	0.7	0
6678648 SPIKE	Sample Value	6	<0.2		22	110		<5	27	<3
6678648 SPIKE	Expected Value	110	100		120	200		100	120	100
6678648 SPIKE	% Recovery	89.1	97.4		91.5	114		97.3	96.7	88.0

Soil Metals		MS Total Metals	MS Total Metals	MS Total Metals
Con motalo		Ag	Sn	Zn
6680869 BLANK Value	е	<5	<5	<5
6678623 DUPLICATE Sam	ple Value	<5	9	410
6678623 DUPLICATE Dupl	licate Value	<5	9	360
6678623 DUPLICATE % R	PD	0	2.0	12.6
6678648 SPIKE Samp	ple Value		13	99
6678648 SPIKE Expe	cted Value		110	190
6678648 SPIKE % Re	ecovery		103	102

Soil TRH/TPH (V	oil TRH/TPH (Volatile)		TRH (C6-C10) & F1	TRH (C6-C10) & F1
3011 11(11/11 11 (V			TRHC6-C10	TRHC6-C10 minus BTE
6677848 SPIKE	Sample Value	<20	<20	
6677848 SPIKE	Expected Value	160	160	
6677848 SPIKE	% Recovery	91.0	94.9	
6678574 DUPLICATE	Sample Value	<20	<20	<20
6678574 DUPLICATE	Duplicate Value	<20	<20	<20
6678574 DUPLICATE	% RPD	0	0	0
6680028 BLANK	Value	<20	<20	<20
6678633 SPIKE	Sample Value	<20	<20	
6678633 SPIKE	Expected Value	170	170	
6678633 SPIKE	% Recovery	71.5	74.4	
6678677 DUPLICATE	Sample Value	<20	<20	<20
6678677 DUPLICATE	Duplicate Value	<20	<20	<20
6678677 DUPLICATE	% RPD	0	0	0
6681579 BLANK	Value	<20	<20	<20

Soil TRH/TPH	TRH & TPH (>C10)						
	TPH C10-C14	TPH C15-C28	TPH C29-C36	TRH>C10-C16	TRH>C16-C34	TRH>C34-C40	Sum of TRH>C10-C40
6678588 DUPLICATE Sample Value	<40	<100	110	<40	110	<100	110
6678588 DUPLICATE Duplicate Value	<40	<100	130	<40	140	<100	140

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

Water microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 Page:
 Page 37 of 37

 Batch No:
 20-40358

Report Number:

844277

Client:

Landserv Pty Ltd

Client Program Ref: M0790 Wattie Watson ESA

		TRH & TPH (>C10)						
		TPH C10-C14	TPH C15-C28	TPH C29-C36	TRH>C10-C16	TRH>C16-C34	TRH>C34-C40	Sum of TRH>C10-C40
6678588 DUPLICATE %	% RPD	0	0	16.8	0	20.0	0	24.0
6681551 BLANK Va	'alue	<20	<50	<50	<20	<50	<50	<50
6678655 SPIKE Sa	ample Value		88			170		
6678655 SPIKE Ex	xpected Value		1200			1200		
6678655 SPIKE %	Recovery		95.7			96.1		
6679976 DUPLICATE Sa	Sample Value	<400	1300	1300	<400	2200	<1000	2200
6679976 DUPLICATE DI	Ouplicate Value	<400	1200	1300	<400	2100	<1000	2100
6679976 DUPLICATE %	% RPD	0	5.4	2.5	0	2.5	0	4.7
6681742 BLANK Va	'alue	<20	<50	<50	<20	<50	<50	<50
6681751 DUPLICATE Sa	Sample Value	<20	<50	<50	<20	51	<50	51
6681751 DUPLICATE DI	Ouplicate Value	<20	<50	<50	<20	50	<50	50
6681751 DUPLICATE %	% RPD	0	0	0	0	1.1	0	2.0
6681755 SPIKE Sa	ample Value		<50			<50		
6681755 SPIKE Ex	xpected Value		960			990		
6681755 SPIKE %	Recovery		103			102		
6684975 BLANK Va	'alue	<20	<50	<50	<20	<50	<50	<50

CERTIFICATE OF ANALYSIS

Work Order : EM2014690

: ALS WATER RESOURCES GROUP

Contact : TUYEN NGUYEN

Address : CARIBBEAN BUSINESS PARK 22 DALMORE DRIVE

SCORESBY VIC, AUSTRALIA 3179

Telephone : +61 03 8756 8000
Project : LANDSERV (20-40358)

Order number : 111595

C-O-C number : ---Sampler : ---Site : ----

Client

Quote number : EN/109/18 Scoresby for EM batches

No. of samples received : 17
No. of samples analysed : 17

Page : 1 of 6

Laboratory : Environmental Division Melbourne

Contact : Customer Services EM

Address : 4 Westall Rd Springvale VIC Australia 3171

 Telephone
 : +61-3-8549 9600

 Date Samples Received
 : 26-Aug-2020 09:00

 Date Analysis Commenced
 : 26-Aug-2020

Issue Date : 26-Aug-2020 17:17

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Uyen Dalkin Approved Asbestos Identifier Melbourne Asbestos, Springvale, VIC

Page : 2 of 6 Work Order : EM2014690

Client : ALS WATER RESOURCES GROUP

Project : LANDSERV (20-40358)

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2
- EA200: 'Yes' Asbestos detected by polarised light microscopy including dispersion staining.
- EA200: 'No*' No asbestos found, at the reporting limit of 0.1g/kg, by polarised light microscopy including dispersion staining. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.
- EA200: 'No' No asbestos found at the reporting limit 0.1g/kg, by polarised light microscopy including dispersion staining.
- EA200: N/A Not Applicable



Page : 3 of 6 Work Order : EM2014690

Client : ALS WATER RESOURCES GROUP

Project : LANDSERV (20-40358)

Analytical Results

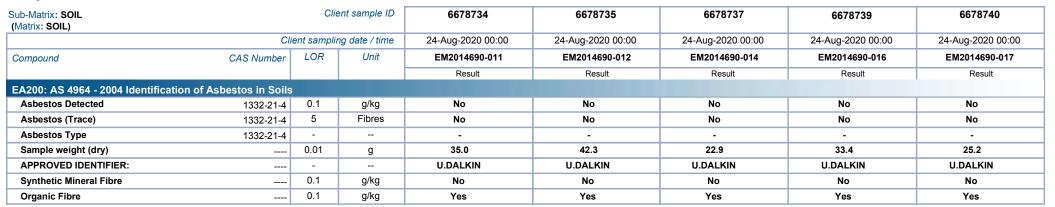


Page : 4 of 6 Work Order : EM2014690

Client : ALS WATER RESOURCES GROUP

Project : LANDSERV (20-40358)

Analytical Results

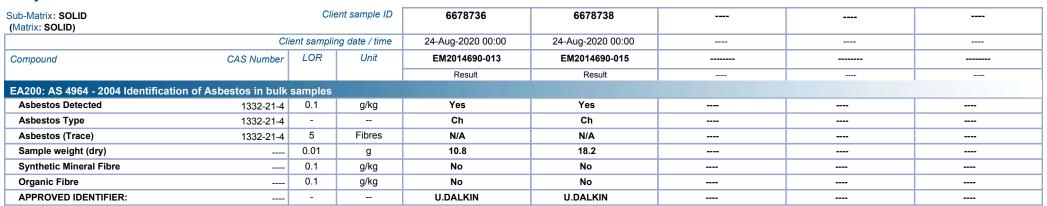


Page : 5 of 6 Work Order : EM2014690

Client : ALS WATER RESOURCES GROUP

Project : LANDSERV (20-40358)

Analytical Results



Page : 6 of 6 Work Order : EM2014690

Client : ALS WATER RESOURCES GROUP

Project : LANDSERV (20-40358)

Analytical Results

Analytical Results Descriptive Results

Sub-Matrix: SOIL

Method: Compound	Client sample ID - Client sampling date / time	Analytical Results
A200: AS 4964 - 2004 Identificatio	n of Asbestos in Soils	
EA200: Description	6678723 - 24-Aug-2020 00:00	Brown sandy soil with organic matter.
EA200: Description	6678725 - 24-Aug-2020 00:00	Brown soil with rock matter.
EA200: Description	6678726 - 24-Aug-2020 00:00	Brown sandy soil with rock and organic matter.
EA200: Description	6678727 - 24-Aug-2020 00:00	Brown sandy soil with rock matter.
EA200: Description	6678728 - 24-Aug-2020 00:00	Brown soil with rock and organic matter.
EA200: Description	6678729 - 24-Aug-2020 00:00	Brown beige sandy soil with organic matter.
EA200: Description	6678730 - 24-Aug-2020 00:00	Brown tan clay like soil with rock and organic matter.
EA200: Description	6678731 - 24-Aug-2020 00:00	Brown clay like soil with rock and organic matter.
EA200: Description	6678732 - 24-Aug-2020 00:00	Brown sandy soil with organic matter.
EA200: Description	6678733 - 24-Aug-2020 00:00	Tan sandy soil with rock and organic matter.
EA200: Description	6678734 - 24-Aug-2020 00:00	Brown sandy soil with rock and organic matter.
EA200: Description	6678735 - 24-Aug-2020 00:00	Brown sandy soil with rock and organic matter.
EA200: Description	6678737 - 24-Aug-2020 00:00	Brown sandy soil with rock and organic matter.
EA200: Description	6678739 - 24-Aug-2020 00:00	Brown beige clay like soil with rock and organic matter.
EA200: Description	6678740 - 24-Aug-2020 00:00	Brown sandy soil with rock and organic matter.

Sub-Matrix: SOLID

Method: Compound	Client sample ID - Client sampling date / time	Analytical Results
EA200: AS 4964 - 2004 Identification of Asbestos	in bulk samples	
EA200: Description	6678736 - 24-Aug-2020 00:00	Asbestos sheeting fragments approx 35 x 30 x 3mm.
EA200: Description	6678738 - 24-Aug-2020 00:00	Asbestos sheeting fragment approx 90 x 50 x 4mm.

											_					_													
Landserv Chain Of C												CUSTODY																	
ANDSERV DETAILS									LABORATOR	Y DETAILS																			
Address: 293A Bay Street, Port Melbourne Tel: 61 3 9646 0833 Froject Manager: Angus Robinson E-mail: angus.robinson@landserv.com.au ryan.edwards@landserv.com.au emily.mcasey@landserv.com.au							Lab, Name: Lab, Addres	Lab. Name: Envirolab Lab. Address: 25 Research Drive, Cro Contact Name: Pamela Adams							Fax: Croydon South VIC Preliminary Report Final Report by: Lab Quote No:														
Gampled By: AR + EM Landserv Project No: M0790									Project Nam	e: Watti				_							Page	el of :							
Specifications:																alysis I	Reques	t_					_						
,							Yes /No					1											l	Other					
1. TAT required? 24hr 48hr 3 days 5days								Yes	_			1																	
2. Fast TAT Guarantee Required?								No												ļ	l		, 1	1 '	j ,				
3. Is any sediment layer present in waters to be excluded from extractions?:								Nģ	┑ ౣ											1			, !	1 !					
4. % extraneous material removed from samples to be reported as per NEPM 5.1.1?:								Nó	🗏 ន														, !	1 1	()				
5. Special storage requirements:								Nò	7											l			, !	1 1	1				
6. Low reporting limits required for groundwaters?								No	7														, !	1 '					
Lab I.D. Number	Sample ID	Sample Date		Matrix	_	Pi	eservati	ion	Contaîner	7														, !	1 '				
- Lab I.D. Nomber		Sumple Date	soil	water	leachate	filfed	acid	ice	(No. & type)	<u> </u>												<u> </u>			<u> </u>				
1	BH601/0.4-0.5	24/08/2020	×		<u> </u>			×	Jar ⁽	×								ļ			<u> </u>			!	<u></u>				
2	BH603/0.6-0.7	24/08/2020	x					x	Jar	×																			
3	BH625/0.4-0.5	24/08/2020	х					х	Jar `	×																			
																				1/3-				ab Serv earch (h_t				
		-			1	<u> </u>				\top										ELÍVIE	OUAB	Croyd	n Sou	th VIC	3136				
		-			<u> </u>				-	+	+	-	_							1	"/	10,070	Ph: (03	9783	2500 -	$\vdash \vdash \vdash$			
			<u> </u>		 			Ь		┵	<u> </u>							└	ļ	Job	No:				\bigsqcup	igsquare			
					L														ļ			24	76	1_		ļ			
																			1	Date	Recei	ved:	261	3/2	ව				
						1	1								\vdash				ved: 5					_					
					 			-		+						-		┢	\vdash	Rec	ived t	y. G yAmb elleap	5		12	6			
· · · · · · · · · · · · · · · · · · ·			 		├			-		+	+-		_		 			-	├	Tom	y Coc	HAMB	ent		الملا	P			
			!		 	<u> </u>				-		-	<u> </u>							Con	ng: Id	h/leap	16K)	ــا	igspace	Ш			
					<u> </u>				-	_										Sec	rity: 10	tagt/#	reken/	None	<u> </u>	igsqcup			
									1																				
								_		\top											† —			\sqcap					
			 							_									-		1			\vdash	\vdash	\vdash			
			 		├──	-		\vdash	 _	-	+	-		-	 				-	+	-	├		├─┤		\vdash			
			 		╂			-		_	₩	-		-	_				<u> </u>	-	ļ	<u> </u>		┝╌┙	$igwdapsilon^{\prime\prime}$	⊢ I			
			ļ	 	<u> </u>	<u> </u>		<u> </u>					<u> </u>	<u> </u>					├ —	 	├			\vdash	igwdown		_		
				ļ		<u> </u>						_				_			<u> </u>	 —	<u> </u>	<u> </u>		 	 _				
								ــــــا			<u> </u>		<u> </u>	L	L	1.1.5.	4 5 1 -					Cala. 1D			\bigsqcup				
Calinguish and In		e					Date	3E/00 /	0000 lp=1	Date id at law							Lab Report No.							Esky ID					
Relinquished by: Signed: Date: 25/08/2020 Angus Robinson of Landsery									2020 Relinquished	ished by: Signed: Date:																			
Received by: Signed: Date: of								Received by	/i				of			Signed	l:			-				Dafe:					
201011111111111111111111111111111111111	Attack to complement of the Holder					- On-In	- 1 PM		to chack off govern			4											Se 200 / -						