
Contamination Assessment

351 St Kilda Road, St Kilda

Attachment 3: 351 St Kilda Rd, St Kilda - contamination assessment

Client: City of Port Phillip Surveying Asset Recording Issued: 2/06/2021 Civil Engineering Version: Infrastructure Engineering Traffic & Transport Engineering Prepared by: S.Tomkinson **Environmental Consulting** A.Mellett Checked by: Water Resource Engineering Strata Certification (NSW) A.Mellett Project Manager: Town Planning 2101228 Urban Design Project Number: Landscape Architecture Project Management

Revision Table

REV	DESCRIPTION	DATE	AUTHORISED
0	Final	26/03/2021	A.Mellett

Copyright Notice

© Copyright - Beveridge Williams & Co P/L

Users of this document are reminded that it is subject to copyright. This document should not be reproduced, except in full and with the permission of Beveridge Williams & Co Pty Ltd

Contents

1		INTRODUCTION	1
2		DESKTOP REVIEW	2
	2.1 2.2 2.3 2.4 2.5	Aerial Photographs EPA Priority Sites Register and Issued Certificates and Statements of Environmental Audit Site History Review Physical Site Settings Site Inspection	
3		POTENTIAL FOR CONTAMINATION	7
4		SOIL CONTAMINATION ASSESSMENT	8
	4.1 4.1.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.4 4.5	Assessment Guidelines and Criteria NEPM (Amendment 2013) Ecological Investigation Levels Criteria Derivation Field Methodology Soil Investigations Boreholes Soil Observations Contamination Ranking and PID Readings Soil Chemical Testing Program Soil Chemical Testing Results	10 1110 1110
5		DISCUSSION	12
	5.1 5.2 5.3 5.4 5.4.1	Human Health Maintenance of Ecosystems Aesthetics Offsite Disposal – EPA Fill Criteria EPA Fill Criteria (After 1 July 2021)	12 12 12 12 12
6		QUALITY CONTROL	13
	6.1 6.2	Soil Investigation Quality Control Summary	13
7		CONCLUSIONS	
	7.1	Duty to Notify EPA Victoria – Upcoming Changes to the Environmental Protection Act	14
8		LIMITATIONS	15

Figures

FIGURE 1 - BOREHOLE SAMPLE LOCATION PLAN

Appendix

APPENDIX A PLANNING PROPERTY REPORT

APPENDIX B AERIAL PHOTOGRAPHS

APPENDIX C SITE PHOTOGRAPHS

APPENDIX D BOREHOLE LOGS

APPENDIX E TABULATED SOIL RESULTS

APPENDIX F NATA LABORATORY CERTIFICATES OF ANALYSIS

1 INTRODUCTION

At the request of City of Port Phillip, Beveridge Williams & Co P/L (Beveridge Williams) conducted a Contamination Assessment of 351 St Kilda Road, St Kilda (referred to as "the site" in this report).

The purpose of the Contamination Assessment was to identify if the site contained potential for soil contamination (from current or historical site uses) that may pose an adverse risk to human health and/or the environment, whether there is a 'Duty to Notify' EPA Victoria of contaminated land and the need for further assessment, management or remediation of the site.

This report presents information on the site history, the results of a preliminary soil sampling and testing program, an evaluation of the chemical testing results with respect to relevant criteria and the extent and implications of testing results regarding the ongoing use of the site as a Council reserve.

2 DESKTOP REVIEW

2.1 Aerial Photographs

A review of historical aerial photographs from 1931, 1945, 1951, 1975, 2010 and 2019 was undertaken prior to attending the site. A summary is provided in Table 2-1. Copies of the aerial photographs are shown in Appendix A.

Table 2-1: Aerial Photography Review Summary

ITEM	SITE DETAILS
1931 DELWP	Onsite: The site appears to be the rear portion of a larger lot and appears to be part of a commercial building or terrace style houses.
	Offsite : The surrounding area appears to mainly be residential and commercial. St Kilda Road is visible to the east as a small two lane road.
1945 (DEWLP)	Onsite: The site appears to be part of a vacant area behind the commercial building, with smaller structures visible along the western and southern boundary.
(DETTEL)	Offsite: No significant changes are visible, a tramline has been constructed on Carlisle Street.
1951	Onsite: No significant changes are visible.
(DEWLP)	Offsite: No significant changes are visible.
1975 (DEWLP)	Onsite: The site appears vacant. St Kilda Road has been expanded to its current width. The commercial structure and smaller buildings have been demolished and the lot has been reduced down to its current size.
	Offsite: St Kilda Road has been expanded and neighbouring properties have been reduced to fit the new road reserve, structures have been demolished to accommodate the expansion. A building has been built on the property immediately west of site.
2010	Onsite: No significant changes are visible. Tree growth is visible on site.
(Nearmap)	Offsite: No significant changes are visible.
2020	Onsite: No significant changes are visible.
(Nearmap)	Offsite: No significant changes are visible.

2.2 EPA Priority Sites Register and Issued Certificates and Statements of Environmental Audit

The site is not listed on the EPA Priority Sites Register and there are no EPA Priority Sites within 500 m of the site.

A search of the list of issued Certificates and Statements of Environmental Audit revealed twenty seven EPA Priority Sites within 500 m of the site and two groundwater quality restricted used zones within 500m of the site. A summary of environmental audits within 200m of site are detailed in Table 2.

Table 2: Nearby Certificates or Statements of Environmental Audit

CARMS NO. / AUDIT TYPE	ADDRESS / DISTANCE TO SITE	REASON FOR AUDIT	RISK TO SITE (LOW/MEDIUM/HIGH)
70969-1 / 53X Statement of Environmental Audit / Completed 3/4/2013	10 Martin Street, St Kilda / approximately 160m northeast of the site	Former use: Previous use as metal works (manufacturing gaskets, ornamental metallics) from 1960s to 2010. Current use as a warehouse with evidence of chemical storage and waste collection pit. Nature and extent of continuing risk: Elevated concentrations of lead and PAHs were detected in the fill material above HIL A criteria and above HIL D criteria for lead. A Groundwater assessment detected elevated concentrations of heavy metals (Co, Cu, Mn, Ni, Zn), chloride, sulphate, sodium and nitrate. It is noted that groundwater concentrations are attributed to natural background concentrations or regional background concentrations or regional background contamination. Outcome of audit: Statement of Environmental Audit indicating property suitable for high density residential, commercial & industrial use. On the conditions of a cap such as concrete floor slab or 0.5m of fill, and a restriction on extracting groundwater for uses such as agriculture and parks & gardens.	Low risk The soil impacts at the audit property are considered unlikely to impact the subject site. Groundwater flow direction from the audit property was inferred towards the southwest. While the audit site was not the source of the groundwater pollution, the direction of groundwater flow is towards the subject site.
62851-1 / 53X Statement of Environmental Audit / Completed 17/07/2009	12, 14 & 18 Martin Street, St Kilda / approximately 180m northeast of the site	Former use: The site was historically residential (up to early 1970s, then the site was converted into three warehouses. Site activities since then have included taxi truck depot, electroplating, polishing and metal finishing and most recently warehouses as storage. Nature and extent of continuing risk: Soils onsite are impacted with elevated concentrations of PAH's and lead above HIL A and D criteria. Groundwater pollution remains on the site and is impacted by PCE. EPA Victoria has determined that the audit site has been cleaned up to the extent practicable. Outcome of audit: Statement of Environmental Audit issued. On the conditions that site soils are protected by a barrier of permanent paving of 0.5m of clean fill, and groundwater is not used for primary contact recreation or any other precluded use.	Low risk The soil and groundwater impacts at the audit property are considered unlikely to impact the subject site.

CARMS NO. / AUDIT TYPE	ADDRESS / DISTANCE TO SITE	REASON FOR AUDIT	RISK TO SITE (LOW/MEDIUM/HIGH)
		Former use: Former motor engineer and motor mechanic site from 1927-1974, further anecdotal evidence this continued until closure in 1990s. Leather dressing and dying company in surrounding areas. Current use residential and nail salon.	
41002-1 / 57AA Statement of Environmental Audit / Completed 29/02/2000	126 Carlisle Street/ approximately 190m east of the site	Nature and extent of continuing risk: Concentrations of analytes related to underground fuel storage tanks present in site soils (BTEX and TPH) and groundwater (BTEX). Concentrations may present a long-term risk to human health.	Low risk The soil and groundwater impacts at the audit property are considered unlikely to impact the subject site.
		Outcome of audit: The underground storage tanks were removed and contaminated soils removed from site. A Statement of Environmental Audit was issued with the condition of "residential use with minimal access to the soil".	
		Former use: The site has historically been residential or commercial/retail up until 19506, where it was a confectionary manufacturer until 1985 where is became retail. A 2,000L UST was identified to be on site.	
35620-1 / 57AA Statement of Environmental Audit / Completed 16/08/1998	120-124 Carlisle Street/ approximately 180m east of the site	Nature and extent of continuing risk: Concentrations of analytes related to fuel storage tanks present in site soils (lead, zinc, PAHs, TPH) were found exceeding NEHF HIL criteria, and groundwater (BTEX). Concentrations may present a long-term risk to human health.	Low risk The soil and groundwater impacts at the audit property are considered unlikely to impact the subject site.
		Outcome of audit: Statement of Environmental Audit issued with the site being suitable for high density residential provided appropriate barriers (paving, concrete etc) are in place to prevent access to contaminated soils.	

2.3 Site History Review

Historical information on the site and surrounding area is summarised in Table 2-3.

Table 2-3: Site History Review

DATA / SOURCE	SUMMARY
Sands & McDougall Directory Search	The search revealed that the site was listed as an engineers in 1965, with the surrounding listed properties listed as commercial/retail.
Via the Unearthed Victoria Portal ¹	Based on the review of the Sand & McDougall listed businesses operated in the surrounding area, no listed businesses were considered to present a contamination risk to the site.
MMBW Plans Via State Library of Victoria	A search of the online MMBW plans was conducted on 21 May 2021. Detail Plan No. 1372 shows that the site is part of an unmarked large lot surrounded by residential structures and a sawmill immediately west of site.

2.4 Physical Site Settings

Information on the physical site setting and conditions are summarised in Table 2-4.

Table 2-4: Environmental Data Summary – Physical Site Settings and Conditions

DATA / SOURCE		SUMMARY					
Geology DPI GeoVic version 3 ² website	to Pliocene aged Red Blut	A review of the DPI GeoVic version 33 website indicates that the site is situated on Miocene to Pliocene aged Red Bluff Sandstone (Nbr) comprising sandstone, conglomerate: pale yellow and brown; fine to coarse-grained, massive to well bedded; cross-bedded; local ironstone.					
Topography	The site is generally flat						
Surface Water Features	No surface water features o	re visible onsite.					
Drainage	Surface water on the site is Road.	expected to flow into nearby drainage infrastructure on St Kilda					
Previous Beveridge Williams Reports		riously conducted a hydrogeological contamination assessment th west of site (within 30m of the site).					
	The hydrological contamin contaminants of concern.	nation assessment found no elevated concentrations for any					
Groundwater Conditions	Groundwater Depth	Less than 5.0 m below ground surface.					

¹ https://mapshare.vic.gov.au/victoriaunearthed/ - (online) accessed January 2021

² http://er-info.dpi.vic.gov.au/sd_weave/anonymous.html - (online) accessed January 2021

³ http://er-info.dpi.vic.gov.au/sd_weave/anonymous.html - (online) accessed June 2019

DATA / SOURCE	SUMMARY					
Visualising Victoria's Groundwater⁴ database	Inferred Groundwater Flow Direction	Groundwater beneath the site is considered likely to be following regional topography towards Port Philip Bay to the west.				
	Total Dissolved Solids (TDS)	Between 1,000 – 3,500 mg/L				
	Groundwater Segment	Segment A2 (Based on TDS)				
	Protected Beneficial Uses	The protected beneficial uses of Segment A2 groundwater, a per the State Environment Protection Policy (SEPP) for Water (2018), are listed below:				
		Water dependent ecosystems and species				
		Acceptable potable water supply				
		Potable mineral water supply				
		Stock Water				
		Industrial / commercial water use				
		Water-based recreation (primary contact recreation)				
		Traditional Owner cultural values				
		Cultural and spiritual values				
		Buildings and structures				
		Geothermal properties				

2.5 Site Inspection

An inspection of the site was carried out by a Beveridge Williams Environmental Professional on 25 May 2021. The following observations were made during the site inspection:

- The site was accessed via St Kilda Road
- The site was mostly clear with some trees along the north, west and south boundaries
- The surrounding buildings to the north and west were apartments, with the property to the south being vacant
- Some sparse rubbish was observed on surface including glass

⁴ http://www.vvg.org.au/ - (online) accessed January 2021

3 POTENTIAL FOR CONTAMINATION

Based on historical sources of information and site inspection, Beveridge Williams considers that the site was historically used as residential/commercial and a Council reserve.

Beveridge Williams considers the risk of widespread contamination across the majority of the site as medium, depending on the origin of any fill onsite.

Beveridge Williams considers that there is a low risk of adverse contamination from offsite activities based on the distance and groundwater flow direction from nearby audit properties and potentially contaminating businesses/activities (current and historical).

Based on the information provided by the site history and site inspection, the following activities and potential contaminants of concern have been listed in Table 3-1.

Table 3-1: Potential Contamination Sources

Source / Site Activities	Onsite / Offsite	Location	Contaminants
Imported fill material	Onsite	Entire Site	Heavy metals, organochlorine pesticides (OCP), polycyclic aromatic hydrocarbons (PAH), total recoverable hydrocarbons (TRH), asbestos-containing materials
Site buildings/structures (Historical)	Onsite	Localised areas onsite	Possible asbestos containing materials and heavy metals (eg. Lead paints)

4 SOIL CONTAMINATION ASSESSMENT

4.1 Assessment Guidelines and Criteria

The Victorian State Environmental Protection Policy (SEPP), Prevention and Management of Contaminated Land (June 2002, updated September 2013) lists the beneficial uses for each segment of land to be protected.

Table 4-1: Protected Beneficial Uses of Land

					LAND USE			
BENE	FICIAL USE	PARKS AND RESERVES	AGRICULTURAL	HIGH DENSITY	OTHER SSG SAC	RECREATION / OPEN SPACE	COMMERCIAL	INDUSTRIAL
Maintenance of	Natural Ecosystems	٧						
ecosystems	Modified Ecosystems	٧	v		v	V		
	Highly Modified Ecosystems		v	√	v	V	٧	V
Human Health	,	V	٧	٧	V	٧	V	٧
Buildings and Structures		٧	٧	٧	٧	٧	٧	٧
Aesthetics	Aesthetics			٧	٧	v	V	
Production of f	Production of food, flora and fibre		٧		٧			

Note: Table 4-1 is a reproduction of 'Table 1 – Protected Beneficial Uses of Land' from the State Environment Protection Policy (Prevention and Management of Contamination of Land), June 2002. The shading denotes the beneficial uses to be protected for the proposed site use.

- Maintenance of modified and highly modified ecosystems National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No.1) (NEPM (Amendment 2013)) - Ecological Investigation Levels (EIL). EPA Fill criteria (EPA Industrial Waste Resource Guidelines (IWRG) Publication No. 621 published by the Environment Protection Authority of Victoria, which lists the maximum concentrations of contaminants allowed in soil to be disposed of as Clean Fill, Category C and Category B Contaminated Soil) has been referenced also.
- Human health NEPM (Amendment 2013) Human Health Investigation Levels (HIL) for low-density residential
 with gardens / accessible soil, including children's daycare centres, kindergartens, preschools and primary
 schools (HIL/HSL A) and CRC Care 2011 Direct Contact HSL A have been referenced.
- Buildings and structures Contamination must not cause the land to be corrosive to or adversely affect the
 integrity of structures or building materials
- Aesthetics Contamination must not cause the land to be offensive to the senses of human beings
- Production of food, flora and fibre Contamination of land must not adversely affect produce quality, flora
 and fibre yield or affect the level of any indicator in food, flora and fibre produced at the site (or that may be
 produced).

4.1.1 NEPM (Amendment 2013) Ecological Investigation Levels Criteria Derivation

The NEPM (Amendment 2013) states that 'the ElL [criteria] takes into account the biological availability of the element in different soils and separate naturally occurring concentrations of a contaminant and the added contaminant in

deriving ElLs which are based on the 'added risk approach'. This approach assumes that the availability of the ambient background concentration (ABC, the soil concentration in a specified locality that is the sum of the naturally occurring background and the contaminant levels that have been introduced from diffuse or non-point sources by general anthropogenic activity not attributed to industrial, commercial, or agricultural activities) of a contaminant is zero or sufficiently close that it makes no practical difference. More importantly, it assumes that the background 'has resulted in the biodiversity of ecosystems or serves to fulfil the needs for micronutrients for the organisms in the environment'. Therefore, the approach views only the effect of added contaminants to the environment as adverse (for further information refer to Section 2.4, Schedule B5b). Thus, rather than having a single numerical limit for a contaminant, different soils will have different limits. The ElL derivation methodology generates, wherever possible, soil-specific ElLs'.

Based on the site history and current site uses, Beveridge Williams considers that any contamination identified on the site is unlikely to have been added within the last 2 years indicating that contamination would be "aged" (as defined by NEPM (2013 Amendment)). Therefore Beveridge Williams has adopted the "aged" values listed in Appendix A of NEPM 2013 Amendment Schedule B5a "Guide on Ecological Risk Assessment" for urban residential/public open space for reporting purposes.

4.2 Field Methodology

All fieldworks were carried out in accordance with Australian Standard (AS) 4482.1-2005 by a Beveridge Williams Environmental Professional who logged the soil samples generally in accordance with AS 1726-1993 and obtained disturbed soil samples at nominated depths.

The equipment used to recover the required soil samples was cleaned between each sample prior to each sample being taken in accordance with the following procedures:

- All adhered soil and/or other matter was removed by means of scrubbing and flushing with clean water
- The hand sampling equipment was then scrubbed in a phosphate free detergent solution before being rinsed copiously in clean water
- Disposable rubber nitrile gloves worn by the Environmental Professional were replaced prior to the recovery of each sample.

The soil samples were placed into acid-rinsed and solvent-washed screw top glass jars supplied by the analysing laboratory. The jars were tightly closed and kept on ice in a portable cooler until delivery to the laboratory under chain of custody procedures.

Each soil sample was assessed both visually and by odour for evidence of contamination with a ranking on a scale of 0 - 3 as follows:

- 0 No odour or visual evidence of contamination
- 1 Slight visual evidence of contamination and/or slight odour
- 2 Visual evidence of contamination and/or odour
- 3 Obvious visual evidence of contamination and/or strong odour.

A calibrated photoionization detector (PID) was used to screen for the presence of volatile organic compounds (VOCs) in all samples collected. During sampling an extra sample was collected and placed in a properly sealed snap lock plastic bag. The volume of soil used for obtaining PID readings was kept generally uniform for all samples tested. After approximately 15 minutes the plastic bag was pierced with the probe to obtain a PID reading.

All sample locations have been determined and recorded using a hand-held GPS unit (error tolerance +/- 3 m) or determined using measurements from fixed structures/features on site.

All chemical testing was undertaken by the following NATA registered analytical laboratories:

- Primary testing laboratory Ecowise Australia Pty Ltd (ALS Water Resources Group, ALSWRG)
- Secondary testing laboratory (for QA/QC purposes) Eurofins Services Pty Ltd (Eurofins).

4.3 Soil Investigations

4.3.1 Boreholes

On 25 May 2021 a total of five borehole samples (BH01 to BH05) were manually drilled with a hand auger on an approximate grid across the site. With samples taken at surface (0.0-0.1 m depth), as well as each distinct soil layer encountered until termination of the borehole in natural soils.

Borehole sample locations are shown on Appendix D.

4.3.2 Soil Observations

A brown to light brown silty clay to clayey silt fill layer was identified at all locations on site up to a maximum depth of 0.6 mBGL in BH05. The fill material contained inclusions of crushed basalt, brick and tiles in all locations. This was underlain by a brown sandy SILT disturbed natural layer, which was underlain by grey silty SAND and brown mottled grey silty CLAY natural layers.

Logs of the boreholes are presented in Appendix D. Borehole sample locations are shown on Figure 1.

4.3.3 Contamination Ranking and PID Readings

No odours or visible signs of contamination were noted in soil samples.

Table 4-2: Soil Sample Contamination Rankings

CONTAMINATION RANKING	SAMPLE	REASON
0	All Beveridge Williams samples	No odour or visual evidence of contamination

All soil samples were screened in the field with a photoionisation detector (PID). The PID response recorded for all samples were at or below 1.2 ppm.

Each VOC result is expressed as a VOC isobutylene equivalent concentration (in ppm). Different compounds give different responses relative to isobutylene.

4.4 Soil Chemical Testing Program

The chemical testing program for individual samples is detailed in Table 4-3.

Table 4-3: Soil Sample Chemical Testing Program

SAMPLE NUMBERS	TESTING PROGRAM	
BH01/0.0-0.1	EPA 621 Clean Fill Screen ⁵ ,	
BH01/0.2-0.3, BH02/0.0-0.1, BH03/0.0-0.1, BH04/0.0-0.1, BH05/0.0-0.1, BH05/0.1-0.2	Heavy metals ⁶ , Polycyclic Aromatic Hydrocarbons (PAH)	
BH02/0.0-0.1, BH03/0.0-0.1, BH04/0.0-0.1, BH05/0.0-0.1	Total Recoverable Hydrocarbons (TRH	

⁵An EPA 621 screen consists of the following analytes: total metals (\$b, As, Ba, Be, B, Cd, Cr (III+VI), Cr (VI), Co, Cu, Pb, Mn, Hg, Mo, Se, Ag, Sn, V, Zn), total cyanide, total fluoride, speciated phenols (halogenated plus non-halogenated), MAH, PAH, TPH, PCB, CHC and OCP

⁶ Heavy metals: Al, Sb, As, Ba, Be, B, Cd, Cr (III+VI), Co, Cu, Fe, Pb, Mn, Hg, Mo, Ni, Se, Ag, Sr, TI, Th, Sn, Ti, U, V, Zn

4.5 Soil Chemical Testing Results

With the exception of the below samples and analytes, all testes analyte concentrations were reported below the adopted criteria, including all health criteria (NEPM HIL A and NEPM HIL C)

Table 4-4: Chemical Testing Results - Soil Chemical Testing Results, NEPM and EPA Exceedances

	NUMBER OF	MIN	MAX	NEPM (AMENDMENT 2013) EIL AGED CRITERIA (URBAN RESIDENTIAL/PUBLIC OPEN	SAMPLES EXCEEDING EPA IWRG 621				
ANALYTE	SAMPLES TESTED	CONC. (MG/KG)	CONC. (MG/KG)	SPACE)	EPA FILL LIMIT CRITERIA	EPA CATEGORY C LIMIT CRITERIA			
Zinc	7	26	260	BH01/0.0-0.1, BH02/0.0-0.1, BH03/0.0-0.1, BH04/0.0-0.1, BH05/0.0-0.1	BH02/0.0-0.1, BH04/0.0-0.1	None			
Benzo(a) pyrene	7	<0.1	1.7	None	BH02/0.0-0.1	None			

Tabulated soil data is presented in Appendix E. NATA Laboratory Certificates of Analysis are presented in Appendix F.

5 DISCUSSION

5.1 Human Health

All samples tested reported concentrations of all analytes below the NEPM (Amendment 2013) Human Health (HIL A) criteria.

Beveridge Williams does not consider these concentrations to pose a risk to human health as the reported concentrations remain well below the adopted criteria.

5.2 Maintenance of Ecosystems

Concentrations of zinc (up to 260 mg/kg) and benzo(a)pyrene (up to 1.7 mg/kg) were reported above the NEPM (Amendment 2013) EIL/ESL Criteria for urban residential/open public space. In Beveridge Williams' experience, the elevated zinc and B(a)P concentrations are unlikely to affect most vegetation types and existing vegetation and garden health across the site appeared good.

5.3 Aesthetics

Fill inclusions (crushed rock, brick, tile and glass fragments) were noted in boreholes BH01, BH02, BH03 and BH05. Glass was also noted at the surface of the site. The glass and fill inclusions may be considered to pose a problem if left exposed at surface. Beveridge Williams considers the beneficial use of aesthetics to remain protected provided the glass and fill inclusions are removed or do not become exposed.

No potential asbestos-containing materials were observed in the borehole locations.

5.4 Offsite Disposal – EPA Fill Criteria

Concentrations of zinc and benzo(a)pyrene within locations BH02 and BH04 exceed the concentrations listed in the Industrial Waste Resource Guidelines, listed in the Industrial Waste Resource Guidelines, EPA Publication 621. Beveridge Williams considers that soils around BH02 and BH04 are indicatively classified as EPA Category C Contaminated Soils.

5.4.1 EPA Fill Criteria (After 1 July 2021)

New EPA Publication 1828.2 "Waste disposal categories – characteristics and thresholds details the characteristics and thresholds necessary for complying with the new regulations effective from 1 July 2021, specifically, classification of wastes to determine the relevant waste disposal category in accordance with Schedule 6 of the Regulations. Based on the thresholds, site soils are considered to be classified as EPA Fill Material, with soils around BH02 and BH04 classified as EPA Category D Contaminated Soils.

If soils are to be disposed offsite, soils must be classified and removed from site in accordance with EPA guidelines and regulations.

6 QUALITY CONTROL

6.1 Soil Investigation

Secondary laboratory testing of one split sample (BH04/0.0-0.1A) was undertaken by Eurofins and one field duplicate (210525-S-D02) was chemically tested by ALSWRG. Four Relative Percentage Difference (RPD) results were reported above 50% for the analytes Anthracene, Phenanthrene, Benzo(a)pyrene TEQ calc (Zero) and PAHs (Sum of total).

Two rinsate samples (210525-S-RB01 and 210525-S-RB02) were taken but not chemically tested.

6.2 Quality Control Summary

It is considered that the overall quality of the soil analyses carried out by ALSWRG is acceptable.

The quality control data indicated an acceptable level of correlation between the results of ALSWRG and Eurofins. The performance of these laboratories in terms of accuracy, precision and completeness of results is considered to be acceptable.

The chemical testing results from the original samples tested by ALSWRG and Eurofins are considered to be acceptable in terms of data quality. Beveridge Williams has adopted the primary reported analyte concentrations for all discussions and interpretations relating to the contamination assessment.

7 CONCLUSIONS

Beveridge Williams has completed a contamination assessment of the site comprising a site history evaluation as well as soil sampling and testing.

No analyte concentrations were reported above the human health criteria for low density residential (HIL A) in the tested samples. Based on the chemical testing results, Beveridge Williams considers the site is suitable for sensitive use including low density residential and childcare and its current use as a Council reserve.

7.1 Duty to Notify EPA Victoria – Upcoming Changes to the Environmental Protection Act

Based on the findings of this assessment Beveridge Williams considers that City of Port Phillip does not have a 'Duty to Manage' (DtM) or a 'Duty to Notify' (DtN) EPA Victoria of contaminated land under the new Environmental Protection Amended Act 2018 effective 1 July 2021.

8 LIMITATIONS

Soil and rock formations are variable. The borehole logs indicate the approximate subsurface conditions only at the specific test locations. Boundaries between zones on the logs are often not distinct, but rather are transitional and have been interpreted. The precision with which subsurface conditions are indicated depends largely on the frequency and method of sampling, and the uniformity of subsurface conditions.

Chemical conditions described in this report refer only to those conditions indicated by analysis of samples obtained at the points and under the circumstances noted in the report.

These conditions may differ due to the variability of contaminant concentrations in imported fill material or in natural soil as a consequence of activities on the site or adjacent sites. Where conditions encountered at the site or the proposed development differ significantly from those anticipated in this report, it is a condition of this report that Beveridge Williams & Co Pty Ltd be notified of the changes and provided with an opportunity to review the recommendations of this report.

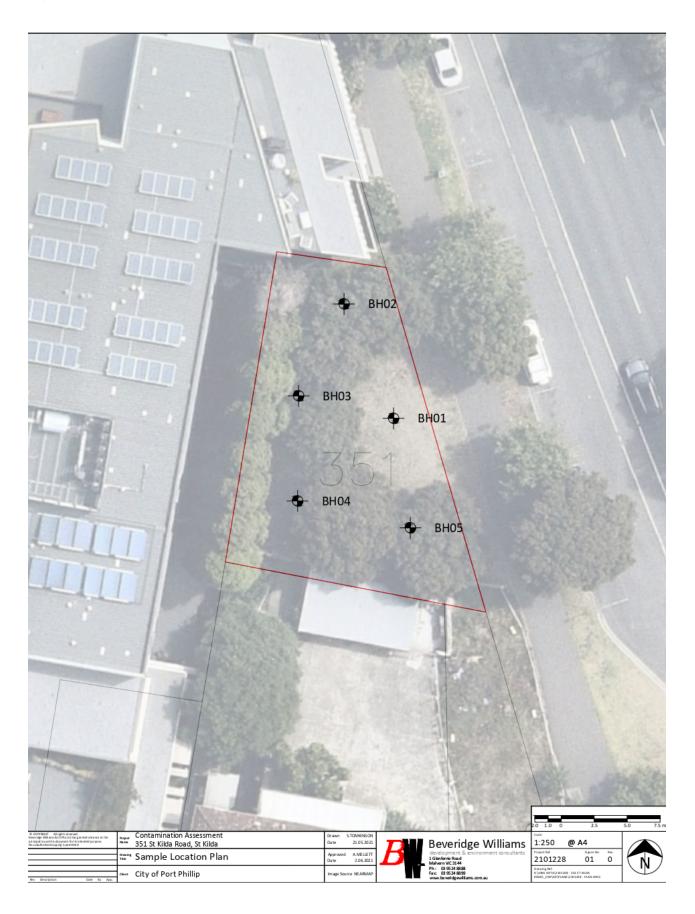
This report has been prepared as per the scope of works agreed between Beveridge Williams & Co Pty Ltd and the Client which commissioned the report. This report cannot be relied on by any other third party for any purpose except with our prior written consent. The Client may distribute this report to other parties and in doing so warrants that the report is suitable for the purpose it was intended for. However, any party intending to rely on this report should contact Beveridge Williams to determine the suitability of this report for their specific purpose.

BEVERIDGE WILLIAMS & CO PTY LTD

5, Towhere

Prepared by Approved for issue by

Sam Tomkinson Andrew Mellett


Environmental Geologist Manager Environmental Division

FIGURES

FIGURE 1 - BOREHOLE SAMPLE LOCATION PLAN

Attachment 3: 351 St Kilda Rd, St Kilda - contamination assessment

APPENDIX A PLANNING PROPERTY REPORT

From www.planning.vic.gov.au at 02 June 202112-30 PM

PROPERTY DETAILS

Lot and Plan Number: Lot 1 TP122000

Address: 2/92 CARLISLE STREET ST KILDA 3182

Standard Parcel Identifier (SPI): 1\TP122000

Local Government Area (Council): PORT PHILLIP www.portphillip.vic.gov.au

Council Property Number: 183773 (Part)
Planning Scheme: Port Phillip Panning Scheme - Port Phillip

Directory Reference: Melway 2P E9

This parcel is one of 2 parcels comprising the property. For full parcel details get the free Property report at Property Reports

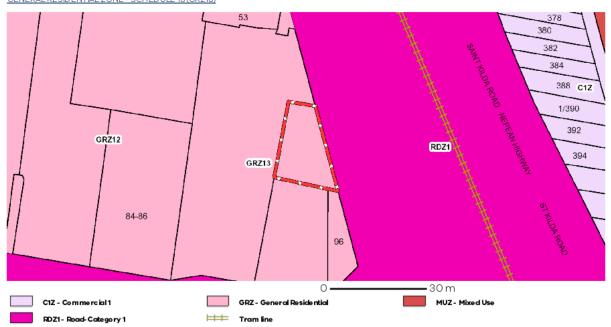
UTILITIES STATE ELECTORATES

Rural Water Corporation: Southern Rural Water Legislative Council: SOUTHERN METROPOLITAN

Melbourne Water Retailer: South East Water Legislative Assembly: ALBERT PARK

Melbourne Water: Inside drainage boundary

Power Distributor: CITIPOWER OTHER


Registered Aboriginal Party: None

View location in VicPlan

Planning Zones

GENERAL RESIDENTIAL ZONE (GRZ)

GENERAL RESIDENTIAL ZONE - SCHEDULE 13 (GRZ13)

Note: labels for zones may appear outside the actual zone - please compare the labels with the legend

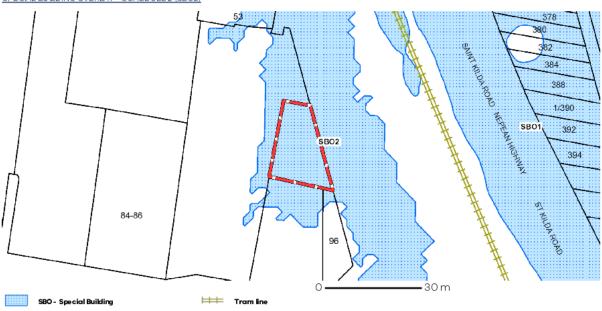
Copyright - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www.2delwp.vic.govau/disclaimer

Notwithstanding this disclaimer, a vendor may rely on the information in this report for the purpose of a statement that land is in a bushfire prone area as required by section 32C (b) of the Sale of Land 1962 (Vic).

30 m

DESIGN AND DEVELOPMENT OVERLAY (DD 0) DESIGN AND DEVELOPMENT OVERLAY - SCHEDULE 271A (DD027-1A) Output B88 DD027 A98 DD027 DD027


Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

Tram line

SPECIAL BUILDING OVERLAY (SBO)

SPECIAL BUILDING OVERLAY - SCHEDULE 2 (SBO2)

DDO - Design and Development

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

Copyright S - State Government of Victoria

Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any lia bility to any person for the information provided.

Read the full disclaimer at https://www2delmpvicgovau/disclaimer

Notwithstanding this disclaimer, a vendor may rely on the information in this report for the purpose of a statement that land is in a bushfire prone area as required by section 32C (b) of the Sale of Land 1962 (Vic).

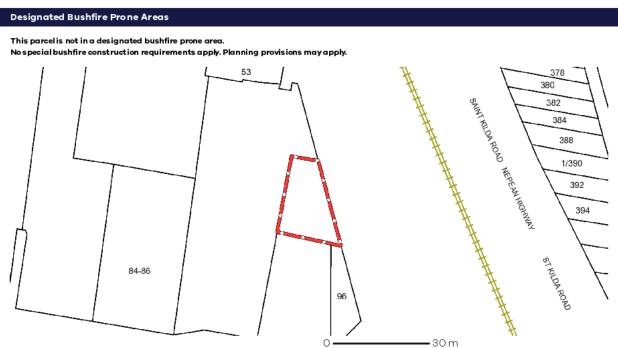
Further Planning Information

Planning scheme data last updated on 27 May 2021.

A **planning scheme** sets out policies and requirements for the use, development and protection of land. This report provides information about the zone and overlay provisions that apply to the selected land. Information about the State and local policy, particular, general and operational provisions of the local planning scheme that may affect the use of this land can be obtained by contacting the local council or by visiting https://www.planning.vic.gov.au

This report is NOT a **Planning Certificate** issued pursuant to Section 199 of the **Planning and Environment Act 1987.** It does not include information about exhibited planning scheme amendments, or zonings that may abut the land. To obtain a Planning Certificate go to Titles and Property Certificates at Landata - https://www.landatavic.gov.au

For details of surrounding properties, use this service to get the Reports for properties of interest.


To view planning zones, overlay and heritage information in an interactive format visit https://mapshare.maps.vic.gov.au/vicplan

For other information about planning in Victoria visit https://www.planning.vic.gov.au

Copyright S - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.deiwpvic.govau/disclaimer

Designated bushfire prone areas as determined by the Minister for Planning are in effect from 8 September 2011

The Building Regulations 2018 through application of the Building Code of Australia, apply bushfire protection standards for building works in designated bushfire prone areas.

 $Designated \ bush fire \ prone \ areas \ maps \ can \ be \ viewed \ on \ VicPlan \ at \ \underline{https://mapshare.maps.vic.gov.au/vicplan}$ or at the relevant local council.

Note: prior to 8 September 2011, the whole of Victoria was designated as bushfire prone area for the purposes of the building control system.

Further information about the building control system and building in bushfire prone areas can be found on the Victorian Building Authority website https://www.vba.vic.gov.au

Copies of the Building Act and Building Regulations are available from http://www.legislation.vic.gov.au

For Planning Scheme Provisions in bushfire areas visit https://www.planning.vic.gov.au

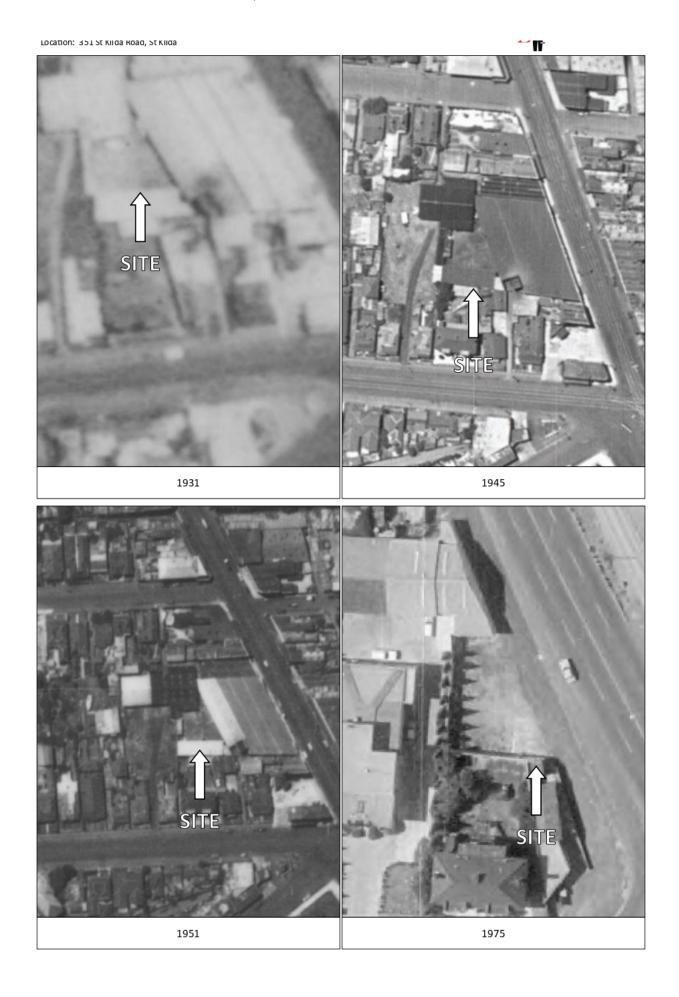
Native Vegetation

Designated Bushfire Prone Areas

Native plants that are indigenous to the region and important for biodiversity might be present on this property. This could include trees, shrubs, herbs, grasses or aquatic plants. There are a range of regulations that may apply including need to obtain a planning permit under Clause 52.17 of the local planning scheme. For more information see Native Vegetation (Clause 52.17) with local variations in Native Vegetation (Clause 52.17) Schedule

To help identify native vegetation on his property and the application of Clause 52.17 please visit the Native Vegetation Information Management system https://nvim.delwp.vic.gov.au/and Native vegetation (environment.vic.gov.au) or please contact your relevant council.

You can find out more about the natural values on your property through NatureKit NatureKit (environment.vic.gov.au)


Copyright - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www.2delwp.vic.govau/disclaimer

Notwithstanding this disclaimer, a vendor may rely on the information in this report for the purpose of a statement that land is in a bushfire prone area as required by section 32C (b) of the Sale of Land 1962 (Vic.)

APPENDIX B AERIAL PHOTOGRAPHS

APPENDIX C SITE PHOTOGRAPHS

CONTAMINATION ASSESSMENT 351 ST KILDA ROAD, ST KILDA

Photograph 1: View facing the north. The site is mostly flat and grassed, with some trees planted near the boundary. The neighbouring properties are apartments.

Photograph 2: View facing the southern portion of site. The brick fence along the southern boundary is a remaining wall from a demolished building.

2101228 - Site Photographs_0.docx

APPENDIX D BOREHOLE LOGS

Attachment 3:

	7	Beveridge Williams development & environment consultants						BH01					
				ŀ	1 Glenferrie Road, Malvern VIC 314 Ph: 03 9524 8888 Fax: 03 9524 8 www.beveridgewilliams.com.au	Soil Bore				PAGE 1 OF 1			
	Client: City of Port Phillip								Project number:			2101	228
	Proje	ect:	Co	onta	mination Assessment				Logged/prepared	by:		L.Sto	vell
	Locat	tion:	35	1 St	Kilda Road, St Kilda				Checked by:			A.ME	LLETT
Г	Date	starte	ed:		25/05/2021	Date completed:	25/05/20	021	Borehole depth (m):		1.1	
Г	Drille	er:			Beveridge Williams				Borehole diamete	er (m	m):	80	
	Drilli	ng equ	uipm	ent:	Hand Auger								
Method	Water	Depth (m)	Graphic Log		Material D	Ob	servations	Moisture	PID (ppm)	Contamination Ranking	Sample details		
Report: ENV BH Project: 2101228 - 351 ST KILDA RD.GPJ. Template: GINT STD AUSTRALIA.GDT. Created: 2/6/21 Hand Auger	None observed			FIII gr. (b)	LL (CL) - silty clay; light brown; sip-graded, sub-angular), fill in otlets; no odour; moist LL (CL) - silty clay; light brown ained, gap-graded, sub-angulasalt, brick); low plasticity no lasticity no plasticity no plasticity; brown; moist M - silty SAND; fine to mediun; moist - silty CLAY; low plasticity; brown; sand (fade), sub-angular; grey; weathered so plasticity; brown; moist	n; sand (fine to medi ar), crushed rock ind odour; moist fine to medium grained sandstone inclusions and stone inclusions and stone; no odour	um clusions ned, gap ons; no d; ; moist	DISTURBED) NATURAL	M	0.0	0 0	BH01/0.2-0.3 BH01/0.4-0.5 BH01/0.8-0.9
Report: ENV													

	Ш	Beveridge	BH02							
		1 Glenferrie Road, Malvern VIC 314 Ph: 03 9524 8888 Fax: 03 9524 8 www.beveridgewilliams.com.au	Soil Bore				PAGE 1 OF 1			
Client:	City of	f Port Phillip				Project number:			2101	228
Project:	Conta	amination Assessment				Logged/prepared	by:		L.Sto	/ell
Location:	351 St	t Kilda Road, St Kilda				Checked by:			A.ME	LLETT
Date started	d:	25/05/2021	Date completed:	25/05/20	021	Borehole depth (m):		1.0	
Driller:		Beveridge Williams	'			Borehole diamete	er (m	m):	80	
Drilling equ	ipment:	: Hand Auger								
Method Water Depth (m)	Graphic Log		Material Description			servations	Moisture	PID (ppm)	Contamination Ranking	Sample details
Report: ENV BH Project: 2101228 - 351 ST KILDA RD.GPJ. Template: GINT STD AUSTRALIA.GDT Created: 2/6/21 None observed None observed O O	M ga CL(fi oc	ILL (ML) - sandy silt; brown; sap-graded, sub-angular), fill in potlets; no odour; dry 1L - sandy SILT; brown; sand (fap-graded, sub-angular); rootletap-graded, sub-angular); rootletap-grad	ine to medium grair ets; no odour; dry	ned,	DISTURBED	D NATURAL	M	0.3	0	BH02/0.0-0.1

Γ	Beveridge Williams development & environment consultants							BH03						
Ŀ	_			ŀ	1 Glenferrie Road, Malvern VIC 314 Ph: 03 9524 8888 Fax: 03 9524 8 www.beveridgewilliams.com.au	44		Soil Bore				PAGE 1 OF 1		
	Clien	t:	Cit	ty of	Port Phillip			Project number:				2101	228	
	Proje	ct:	Co	ntar	mination Assessment				Logged/prepared	by:		L.Sto	vell	
	ocat	tion:	35	1 St	Kilda Road, St Kilda				Checked by:			A.ME	LLETT	
	Date	starte	ed:		25/05/2021	Date completed:	25/05/2	021	Borehole depth (m):		1.0		
	Drille	r:			Beveridge Williams				Borehole diamete	er (m	m):	80		
	Drilli	ng equ	uipm	ent:	Hand Auger									
Method	Method Water Depth (m) Graphic Log				Material Description			Ob	servations	Moisture	PID (ppm)	Contamination Ranking	Sample details	
		_		FIL	L (ML) - sandy silt; brown; sa p-graded, sub-angular), fill in otlets; no odour; dry L (CL) - silty clay; light brown ained, gap-graded, sub-angul asalt, brick); low plasticity no	n; sand (fine to medi ar), crushed rock inc	um	FILL		D	0.0	0	BH03/0.0-0.1 BH03/0.1-0.2	
uger	None observed	- 0.5		MI	L - sandy SILT; brown; sand (f aded, sub-angular); no odour	fine to medium grair ; moist	ned, gap	DISTURBED	O NATURAL	м			-	
Report: ENV BH Project: 2101228 - 351 ST KILDA RD.GPJ Template: GINT STDAUSTRALIA.GDT Created: 2/6/21 Hand Auger		-		CL (fir	1 - silty SAND; fine to mediun b-angular; grey; weathered s - silty CLAY; low plasticity; b ne to medium grained, gap g oist	andstone; no odour	; moist firm; sand				1.2	0	BH03/0.5-0.6 BH03/0.8-0.9	
1228 - 351 ST KILDA		1.0		En	d of borehole at 1.0 m						0.1		3.33, 3.5 3.5	
Report: ENV BH Project: 210		_											-	

Γ	7	\overline{Q}			Beveridge	BH04							
-				-	1 Glenferrie Road, Malvern VIC 314 Ph: 03 9524 8888 Fax: 03 9524 8 www.beveridgewilliams.com.au	Soil Bore				PAGE 1 OF 1			
	lien	t:	Ci	ty of	f Port Phillip				Project number:			2101	228
F	roje	ct:	C	ontai	mination Assessment				Logged/prepared	by:		S.Tor	nkinson
ī	.ocat	tion:	35	51 St	Kilda Road, St Kilda				Checked by:			A.ME	LLETT
	Date	starte	ed:		25/05/2021	Date completed:	25/05/2	.021	Borehole depth (m):		1.0	
ī	Orille	r:			Beveridge Williams				Borehole diamete	er (m	m):	80	
	Drillin	ng eqi	uipm	ent:	Hand Auger								
Method	Water	Depth (m)	Graphic Log		Material Description			Obs	servations	Moisture	PID (ppm)	Contamination Ranking	Sample details
ated: 2/6/21 Hand Auger	None observed			M gr	LL (ML) - clayey silt; brown; sa p graded, sub-angular); clay i w plasticity); no odour; moist L -sandy SILT; brown; sand (fi aded, sub-angular); no odour	ine to medium grain ; moist	ed, gap) NATURAL	M	0.0	0	BH04/0.0-0.1 BH04/0.0-0.1 210525-S-D02 BH04/0.3-0.4
REPORT. ENV BH. Project: Z101228 - 351 ST KILDA RD.GPT. Temprate: GINT ST DAUSTRALDA.GDT. Creater				CL	M - silty SAND; fine to medium b-angular; grey; trace sandstone silty CLAY; LP; brown mottledium grained, gap graded, so	one gravel; no odou	r; moist	NATURAL			0.4	0	BH04/0.6-0.7
Report: ENV BH Project: 21012		_			as a solution of 1.0 III								-

Attachment 3:

F	?		Ī	Beveridge Wil	liam	1S		ВН	0	5		
		-	ŀ	1 Glenferrie Road, Malvern VIC 3144 Ph: 03 9524 8888 Fax: 03 9524 8899 www.beveridgewilliams.com.au			So	il Bore			F	PAGE 1 OF 1
Client:	\Box	City	of	Port Phillip				Project number:			2101	228
Project:	\top	Con	ntan	nination Assessment				Logged/prepared	by:		S.Tor	nkinson
Location	n:	351	St I	Kilda Road, St Kilda				Checked by:			A.ME	LLETT
Date sta	rted:			25/05/2021 Date cor	mpleted:	25/05/2	021	Borehole depth (m):		1.1	
Driller:				Beveridge Williams	'			Borehole diamete	er (m	m):	80	
Drilling e	equip	mei	nt:	Hand Auger								
Method Water Depth (m)	()	Graphic Log		Material Description	n		Ob	servations	Moisture	PID (ppm)	Contamination Ranking	Sample details
Hand Auger None observed 1.	.5		FILL me SMM sub	L (ML) - clayey silt; brown; sand (fine to graded, sub-angular); clay inclusions a plasticity); no odour; moist L (CL) - silty clay; low plasticity; light be dium grained, gap graded, sub-angular - sandy SILT; brown; sand (fine to medded, sub-angular); no odour; moist - silty SAND; fine to medium grained; be angular; grey; trace sandstone graves and sub-angular.	edium grain	d (fine to our; moist	DISTURBE	O NATURAL	M	0.0 0.0 0.0 0.0	0 0 0	BH05/0.1-0.2 BH05/0.5-0.6 BH05/0.6-0.7 BH05/0.8-0.9
			Enc	of borehole at 1.1 m								

APPENDIX E TABULATED SOIL RESULTS

											Me	tals										
	Aluminium	Antimony	Arsenic	Barium	Beryllium	Baron	Cadmium	Onomium (hexavalent)	Oromium (III+VI)	Cobalt	Copper	Iron	lead	Manganeze	Mercury	Molybdenum	Nickel	Selenium	Silver	Tin	Vanadium	Zinc
								mg/kg												mg/kg	mg/kg	mg/kg
EQL	5	5	5	5	5	10	0.2	1	5	5	5	10	5	5	0.05	5	5	3	5	5	5	5
AS 2159-2009, Piling - Design and Installation - Soil	- 1																					
NEPM Amendment 2013 EIL (urban residential/public open space) - aged			100						190		60		1,100				30					70
NEPM Amendment 2013 EIL (urban residential/public open space) - fresh			50			3 3			75		30		270				10		8 8			25
EPA Vic IWRG621 Cat B			2,000				400	2,000	7.0		20,000		6,000		300	4,000	12,000	200	720			140,000
EPA Vic IWRG621 Cat C	3	1 3	500	1		3 3	100	500		1	5,000		1,500		75	1,000	3,000	50	180	500		35,000
EPA Vic IWRG621 Fill			20				3	1			100		300		1	40	60	10	10	50		200
NEPM 2013 Table 18(6) ESLs for Urban Res, Coarse Soil				1		8					3		1	1			1000		9			
NEPM 2013 Table 1A(1) HILs Res A Soil		. 3	100	0 0	60	4,500	20	100		100	6,000		300	3,800	40		400	200	1		1	7,400
NEPM 2013 Table 1A(1) HILs Res BSoil			500		90	40,000		500		600				14,000			1,200	1,400				60,000
NEPM 2013 Table 1A(1) HILs Rec C Soil	- 1	3	300		90	20,000		300		300	17,000			19,000			1,200		1 1			30,000
NEPM 2013 Table 1A(1) Hills Comm/Ind D Soil			3.000			300,000		3,600		4,000				60,000				10,000	1 0			400,000

Field ID	Date	Depth	Sample Type																						
BH01/0.0-0.1	25/05/2021	0-0.1	Normal	-	<5	-6	45	<5	<10	< 0.2	<1	22	5	21	-	100	110	0.11	-6	16	<3	<5	<5	42	97
BH01/0.2-0.3	25/05/2021	0.2 - 0.3	Normal	18,000	<5	18	45	-65	<10	<0.2		67	5	11	100,000	57	110	0.20	-65	13	<3	-6	<5	150	30
BH02/0.0-0.1	25/05/2021	0-0.1	Normal	7,500	-6	8	76	<5	19	0.3	(e)	17	-6	57	10,000	140	120	0.60	-6	15	<3	<5	9	26	260
BH03/0.0-0.1	25/05/2021	0-0.1	Normal	4,300	<5	<5	46	-65	<10	0.2	-	10	-6	26	6,500	140	71	0.12	-5	11	<3	«S	<5	13	160
BH04/0.0-0.1	25/05/2021	0-0.1	Normal	4,100	<5	<5	60	<5	<10	0.3	-	9	<5	27	6,900	180	82	0.72	-6	10	<3	<5	5	15	230
BH05/0.0-0.1	25/05/2021	0-0.1	Normal	5,600	<5	- 6	38	-6	<10	< 0.2	-	11	6	26	6,200	100	45	0.06	-6	7	<3	<5	<5	15	81
BH05/0.1-0.2	25/05/2021	0.1 - 0.2	Normal	7,000	<5	-6	24	<5	<10.	<0.2		10	ó	<5	6,000	30	33	<0.05	-6	<5	<3	-65	<5	18	26

	Г										PAH										
	2-chloronaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Onysene	Dibenz(a,h)anthracene	Fluoranthene	Huorene	Indeno(1,2,3<,d)pyrene	Na phthalene	Phenanthrene	Pyrene	Benzo(a)pyrene TEQ calc	Benzo(a)pyrene TEQ (LOR)	Benzo(a)pyrene TEQ calc	PAHs (Sum of total)
EQL	0.1	0.1	0.1		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		0.1	0.1	0.2		0.1
AS 2159-2009, Pilling - Design and Installation - Soil																					
NEPM Amendment 2013 EIL (urban residential/public open space) - aged															170						
NEPM Amendment 2013 EIL (urban residential/public open space) - fresh										4	1				170					1 1	
EPA Vic IWRG621 Cat B						20		10													400
EPA Vic IWRG621 Cat C					70	5		9 6					9		3 1			8 3			100
EPA Vic IWRG621 Fill						1															20
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil					- 3	0.7		10			1				8			i			
NEPM 2013 Table 1A(1) HILs Res A Soil		0 2			- 0			9		9 7					8 -			3	3	3	300
NEPM 2013 Table 1A(1) HILs Res B Soil		1						1		4			- 8					4	4	4	400
NEPM 2013 Table 1A(1) HILs Rec C Soil																		3	3	3	300
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil																		40	40	40	4,000

Field ID	Date	Depth	Sample Type								0.00													
BH01/0.0-0.1	25/05/2021	0 - 0.1	Normal	<0.1	<0.1	< 0.1	< 0.1	0.5	0.5	0.4	0.4	0.4	0.4	<0.1	0.9	< 0.1	0.4	<0.1	0.2	0.9	0.7	0.8	0.7	5.0
BH01/0.2-0.3	25/05/2021	0.2 - 0.3	Normal	-	<0.1	< 0.1	< 0.1	0.2	0.2	0.2	0.2	0.2	0.2	<0.1	0.3	< 0.1	0.1	<0.1	<0.1	0.3	0.3	0.4	0.3	1.9
BH02/0.0-0.1	25/05/2021	0 - 0.1	Normal	-	+0.2	0.3	0.4	1.6	1.7	1.3	1.5	1.2	1.3	0.4	2.9	< 0.2	1.1	<0.2	1.5	3.0	2.6	2.6	2.6	18
BH03/0.0-0.1	25/05/2021	0 - 0.1	Normal	-	<0.1	< 0.1	< 0.1	0.3	0.4	0.3	0.3	0.3	0.3	<0.1	0.6	< 0.1	0.3	<0.1	0.2	0.6	0.6	0.6	0.5	3.6
BH04/0.0-0.1	25/05/2021	0 - 0.1	Normal		<0.1	< 0.1	0.2	0.8	1.0	0.8	0.7	0.7	0.9	0.1	1.7	< 0.1	0.7	<0.1	0.8	1.6	1.4	1.4	1.4	10
BH05/0.0-0.1	25/05/2021	0 - 0.1	Normal	-	<0.2	< 0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	«O.2	< 0.2	<0.2	<0.2	<0.2	< 0.2	0.2	0.5	< 0.1	<0.2
BH05/0.1-0.2	25/05/2021	0.1 - 0.2	Normal	-	<0.1	< 0.1	< 0.1	<0.1	⊲0.1	<0.1	<0.1	⊲0.1	< 0.1	<0.1	⊲0.1	< 0.1	<0.1	<0.1	×0.1	< 0.1	0.1	0.2	< 0.1	<0.1

Table 01 **Chemical Testing Results** Soil

															21 20 M 20 S 21	v., r., r., r., r., r., r., r., r., r., r													_
				-	_	-	_					_	-		Organ	nochlori	ine Pest	ticides				_		_				_	_
				Other organochlorine pesticides EPAVic	4,4-DDE	a-BHC	Aldrin	Aldrin + Dieldrin	ъвнс	Chlordane	Chlordane (as)	Chlordane (trans)	4-ВИС	000	тоо	DDT+DDE+DDD	Dieldrin	Endosulfan	Endosulfan I	Endosulfan II	Endosulfan sul phate	Endrin	Endrin aldehyde	Endrin ketone	g-BHC (Lindane)	Heptachlor	He ptachlor epoxide	Methoxychlor	Oxychiordane
-				mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/k
EQL				0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
	ling - Design and Instal																												
	nt 2013 EIL (urban resi							11		T .					180														
NEPM Amendme	nt 2013 EIL (urban resi	idential/public open s	pace) - fresh					5 3							180					9 1		9					1		
EPA Vic1WRG621	I Cat B			50				4.8		16						50										4.8			
EPA Vic IWRG621	1 Cat C			10	3			1.2		4	1		8 8		3 3	50		8 8		8 3			9		5 5	1.2	3	-	
EPA VicIWRG621	1 Fill																												
NEPM 2013 Table	e 18(6) ESLs for Urban	Res, Coarse Soil		3				S								3						9							
NEPM 2013 Table	e 1A(1) HILs Res A Soil			1 0				6		50			0 3			240		270		7-		10				6	\$ -1	300	
NEPM 2013 Table	e 1A(1) HILs Res B Soil			3				10		90			1			600		400				20				10		500	
NEPM 2013 Table	e 1A(1) HILs Rec CSoil			3				10		70						400		340			- 7	20				10		400	
NEPM 2013 Table	e 1A(1) HILs Comm/Inc	I D Soil						45		530						3,600		2,000				100				50	=	2,500	
Field ID	Date	Depth	Sample Type																										
BH01/0.0-0.1	25/05/2021	0 - 0.1	Normal	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
BH01/0.2-0.3	25/05/2021	0.2 - 0.3	Normal	-			-					1.		-		-	1.		-		-			-			-	-	
BH02/0.0-0.1	25/05/2021	0 - 0.1	Normal	-		-	-	-				-		-		-	-	-	-		-		-	-	-	-		-	-
BH03/0.0-0.1	25/05/2021	0 - 0.1	Normal	-			-		-		-						-				-		-					-	
BH04/0.0-0.1	25/05/2021	0 - 0.1	Normal	-		-	100				-										-		-					-	
BH05/0.0-0.1	25/05/2021	0 - 0.1	Normal	-	· -	-	127	-	-	- ·	-	-	-	127	-		- 1	-	12	-	0	-	-16	- 2		-	-	-	-
BH05/0.1-0.2	25/05/2021	0.1 - 0.2	Normal			T.	1-1				-			1-1		- 0	-		-					-			-		

		-	TPH	_		-			TRH				_	_		BTEX	_			_	MAH	_
	Đ-93	G0-C14	u5-c28	29-C36	C10-C36 (Sum of total)	G0-C16(F2)	C10-C16 (F2 minus Naphthalene)	a6-C34(F3)	G4-C40 (F4)	06-C10 (F1 minus BTEX)	C10-C40 (Sum of total)	06-C10 (F1)	Benzene	Toluene	Ethylbenzene	Kylene (m & p)	Kylene (a)	Kylene Total	Total BTEX	1,2,4-trimethylbenzene	Sopropylbenzene	Grunne
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/
EQL	20	20	50	50	50	20	20	50	50	20	50	20	0.5	0.5	0.5	1	0.5	1	1	0.5	0.5	0.5
AS 2159-2009, Pilling - Design and Installation - Soil												1.		1 1					0.00			
NEPM Amendment 2013 EIL (urban residential/public open space) - aged																						
NEPM Amendment 2013 EIL (urban residential/public open space) - fresh				1		30						. (6	2	5		8			0.00			
EPA Vic IWRG621 Cat B	2,600				40,000								16									
EPA Vic IWRG621 Cat C	650	į. V		1 3	10,000	9			9		()		4	9		8			8)		9	
EPA Vic IWRG621 Fill	100				1,000								1									
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil	8	1				120	120	300	2,800	180	8		50	85	70			105	15		9	
NEPNI 2013 Table 10(0) ESES for Orban Kes, Coarse 3011		1 7						-		10000	8 3	. 0			-			1000017	11	- 0		
NEPM 2013 Table 1A(1) Hills Res A Soil																						
									8			33		- 2						- 1		Т
NEPM 2013 Table 1A(1) HILs Res A Soil																2						

Field ID	Date	Depth	Sample Type																						
BH01/0.0-0.1	25/05/2021	0 - 0.1	Normal	<20	<20	<50	<50	<50	<20	<20	<50	<50	<20	<50	<20	< 0.5	< 0.5	<0.5	<1	⊲0.5	<1	<1	<0.5	< 0.5	<0.5
BH01/0.2-0.3	25/05/2021	0.2 - 0.3	Normal	-		-	-	-0		-	-	-	-	-		-	-	-		-		-	-93	-	-
BH02/0.0-0.1	25/05/2021	0 - 0.1	Normal	<20	<20	200	320	520	<20	<20	420	130	<20	550	<20	-		(+)	1.0		(+)			-	:
BH03/0.0-0.1	25/05/2021	0 - 0.1	Normal	<20	<20	93	160	250	<20	<20	200	68	<20	270	<20	(3.2	-	-	-	-	-		-01	-	-
BH04/0.0-0.1	25/05/2021	0 - 0.1	Normal	<20	<20	71	110	180	< 20	<20	150	<50	<20	150	<20	-		(+)	-	-	(+)		-	-	-
BH05/0.0-0.1	25/05/2021	0 - 0.1	Normal	<20	<20	61	270	330	< 20	<20	240	130	<20	370	<20	- I		12	(P)		127	-	-		-21
BH05/0.1-0.2	25/05/2021	0.1 - 0.2	Normal	-	-	-	-	-		-	-		-	-	-	-	-	-			1-1	-		-	-

Table 01 **Chemical Testing Results** Soil

								2 1	. 10	Haloge	nated B	enzene							Halog Hydro	enated carbons
				1,2,3,4-tetrachlorobenzene	1,2,3,5-Tetrachlorobenzene	1,2,3-trichlorobenzene	1,2,4,5 tetra dil arobenzene	1,2,4-trichlorobenzene	1,2-dichlorobenzene	1,3,5-Trichlorobenzene	1,3-dichlorobenzene	1,4-dichlorobenzene	2-chlorotoluene	4-chlorotoluene	Brom obenzene	Chlorobenzene	Hexachlorobenzene	Pentachlorobenzene	1,2-di bromoethane	Trichlorofluoromethane
EQL				0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.5	0.5	0.5	0.5	0.05	0.1	0.5	2
AS 2159-2009, Pi	ling - Design and Instal	lation - Soil																		
NEPM Amendme	nt 2013 EIL (urban resi	dential/publicopen:	(pace) - aged			1														
NEPM Amendme	nt 2013 EIL (urban resi	dential/publicopen:	pace) - fresh		9	. 9														
EPA Vic IWRG62	I Cat B					7.0														
EPA Vic IWRG62	I Cat C					1 8		9 3		3 - 1	1		5 8			- 8				
EPA Vic IWRG62:	LFill																			
NEPM 2013 Table	e 18(6) ESLs for Urban	Res, Coarse Soil			1	1 1				8						- 3	-			
	e 1A(1) HILs Res A Soil			1	1			0		3			1			7	10			
	e 1A(1) HILs Res B Soil			- 1									2 3				15			
	e 1A(1) HILs Rec C Soil												1			19	10			
NEPM 2013 Table	e 1A(1) HILs Comm/Ind	DSoil															80			
Field ID	Date	Depth	Sample Type																	
BH01/0.0-0.1	25/05/2021	0-0.1	Normal	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	×0.1	<0.5	<0.5	< 0.5	<0.5	<0.05	<0.1	<0.5	<2
BH01/0.2-0.3	25/05/2021	0.2 - 0.3	Normal	-		-	7.	-	-	-		12	-	-		-	1.		-	-
BH02/0.0-0.1	25/05/2021	0-0.1	Normal	-	-		-	-	-	-			-	-		-	-	-	-81	-
BH03/0.0-0.1	25/05/2021	0-0.1	Normal	- 0		-			-	· .	-		-	-		-	1.2	-		
BH04/0.0-0.1	25/05/2021	0-0.1	Normal	-							-		-	(*)		-			*:	
BH05/0.0-0.1	25/05/2021	0-0.1	Normal	- ()	-		- 12		-			- 12	-	127	-				20)	-
BH05/0.1-0.2	25/05/2021	0.1 - 0.2	Normal	-	-			100	-	-		.5	-	-			-	-		

				77																																	
																			Chlor	inated I	Hydroca	rbons															
				1,1,2,4 etrachloroethane	1,1,1-trichloroethane	1,1,2,24 etra chloro ethane	1,1,2-trichloroethane	1,1-dichloroethane	1,1-dichloroethene	1,1-dichloropropene	1,2,3-trichloropropane	1,2-dibramo-3- chloropropane	1,2-dichloroethane	1,2-Dichloroethene [trans]	1,2-dichloropropane	1,3-dichloropropane	2,2-dichloropropane	Benzal Chloride	Benzotrichloride	Benzyl chloride	Bromochloromethane	Bromodichloromethane	Bromoform	Carbon tetrachloride	Chlorodibromomethane	Chloroform	as-1,2-dichloroethene	a's-1,3-dichloropropene	Dibromomethane	Dichloromethane	Hexachlorobutadiene	Hexachlorocyd opentadiene	Hexachloroethane	Trichloroethene	Tetrachloroethene	trans-1,3-dichloropropene	Vinyl chloride
r				mg/k	g mg/k	g mg/k	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/k	g mg/kg
EQL				0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.1	0.1	0.1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1	0.1	0.1	0.1	0.5	0.5	0.5	1
	g - Design and Installa				-	-	-	_										_												-	-	_	-	_	-	-	\perp
	2013 EIL (urban resid					_																								-						-	
	t 2013 EIL (urban resid	ential/publicopen sp	ace) - fresh		_			_										_				1				3				<u> </u>					\vdash	-	_
EPA VicIWRG621						_												_												<u> </u>	11				\perp		4.8
EPA VicIWRG621							1 :		3 3										2					0		3 3	3				2.8						1.2
EPA VicIWRG621	Fill Control																																				
NEPM 2013 Table	1B(6) ESLs for Urban Re	es, Coarse Soil		3					8						3				2							5						1 3		1 8		12	100
NEPM 2013 Table	1A(1) HILs Res A Soil			2			0		8			0.00							3		9	7 77				8 3						5				0	
NEPM 2013 Table	1A(1) HILs Res B Soil																				-													1			
NEPM 2013 Table	1A(1) HILs Rec C Sail			- 1					8 3															1		8 3											
NEPM 2013 Table	IA(1) HILs Comm/Ind I	Sail		5																												-					
																														$\overline{}$							
Field ID	Date	Depth	Sample Type																																		
BH01/0.0-0.1	25/05/2021	0-0.1	Normal	×0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	×0.5	⊲0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	×0.1	<0.1	<0.1	< 0.5	<0.5	×0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<1	< 0.1	<0.1	<0.1	< 0.5	×0.5	<0.5	<1
BH01/0.2-0.3	25/05/2021	0.2 - 0.3	Normal	1 -	-	-	-	-	-	-	-	-	-	-		1.	-	-	-	-		-	12			-	-	-	-	-	-		-	-	-	-	-
BH02/0.0-0.1	25/05/2021	0-0.1	Normal	-	1	-	-		÷-	-		-	1.5			-	- 1	1-0		-	-		-	-	-		-	-	-3	1-1	-	-	-		1-0	-	-
BH03/0.0-0.1	25/05/2021	0-0.1	Normal	1 2	-	-	-	-	974	-		-		-		-		-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-
BH04/0.0-0.1	25/05/2021	0-0.1	Normal	-	-	-	-	-	-	-		-	141	-		-		-	-				-	-		-		-		-	-	-	-		-	0-0	1 -
BH05/0.0-0.1	25/05/2021	0-0.1	Normal	-	-	-	-	-	-	-		-	127	-	-/	-	-	12	-	-	-		- 2		-	-	-	-		-	-	-	-		12	-	1
BH05/0.1-0.2	25/05/2021	0.1 - 0.2	Normal	-	-	-	-	-	-	-	-	-	1-1	:		-	-	-			-		-	-	-			-		-	-		-		2-0	-	1 -

			_						_	Phe	nals		_							-
	2,3,4,5-Tetrachlorophenal	2,3,4,6-Tetrachlorophenol	2,3,5,6-Tetrachlorophenol	2,4,5-Trichlorophenol	2,4,6-Trichlorophenal	2,4-Dichlorophenol	2,4-Di met hy lphe nol	2,4-Dinitrophenol	2,6-Dichlorophenol	2-Chlorophenol	2-Nitrophenol	4,6-Dinitro-2-methylphenol	4,6-Dinitro-o-cyclohexyl phenol	4-chloro-3-methylphenal	4-Nitrophenol	Cresol Total	Pentachlorophenol	Phenol	Phenois (Total Halogenated)	Phenols (Total Non
																mg/kg		mg/kg		mg/k
QL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	30	0.5	0.5	0.5	10	30	0.5	0.5	1	0.5	0.5	0.5	30
S 2159-2009, Piling - Design and Installation - Soil	1.0																			
IEPM Amendment 2013 ElL (urban residential/public open space) - aged				Ĭ																
IEPM Amendment 2013 EIL (urban residential/public open space) - fresh	5	9 3												2			-			
PA Vic IWRG621 Cat B	9																			
PA Vic IWRG621 Cat C	8	1		\$ 7			8 6		3 3	8		8 3		8 3					9 9	
PA Vic IWRG621 Fill		-																		
IEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil	1									- 0		9					J			
IEPM 2013 Table 1A(1) HILs Res A Soil	9	6)					0 0							7	. 0	400	100	3,000		
IEPM 2013 Table 1A(1) HILs Res B Soil																4,700	130	45,000		$\overline{}$
IEPM 2013 Table 1A(1) HILs RecC Soil		1		V			1			- 7				1	- 9	4,000				
IEPM 2013 Table 1A(1) HILs Comm/Ind D Soil	- 3															25,000		240,000		

Field ID	Date	Depth	Sample Type																				
BH01/0.0-0.1	25/05/2021	0 - 0.1	Normal	×0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	40.5	<30	< 0.5	< 0.5	<0.5	<10	<30	<0.5	<0.5	<1	<0.5	<0.5	< 0.5	×30
BH01/0.2-0.3	25/05/2021	0.2 - 0.3	Normal	0 -	-	-	-		-	-	-	-		-	-	-	-	-	-	-		-	-
BH02/0.0-0.1	25/05/2021	0 - 0.1	Normal	1-9	0-0		-		-	-	1-0	-		-	- 1	-			-			0-0	1-1
BH03/0.0-0.1	25/05/2021	0 - 0.1	Normal	3 -	-	-	-		-		-	-	-	-	-	-	-	-	-	-		-	-
BH04/0.0-0.1	25/05/2021	0 - 0.1	Normal	1	-	-	-		-				-		-			-				-	-
BH05/0.0-0.1	25/05/2021	0 - 0.1	Normal	() 12°	-	-	35-	- 1	- 12	-	127	-	- 2	92		127	-	-	100-	210	- 02		-
BH05/0.1-0.2	25/05/2021	0.1 - 0.2	Normal		-	-	-		-5		1-				-	-		-	-		1.5	-	

Attachment 3

Client: Port Phillip City Council Address: 351 St Kilda Road, St Kilda Job Number: 2101228

	Herbicides	PCBs									Inorganics			
	Dinoseb	Arochlor 1016	Arochior 1221	Arochior 1232	Arochior 1242	Arochior 1248	Arochior 1254	Arochior 1260	PCBs (Sum of total)	Moisture Content	Lyanide Total	Fluoride	anthanum	(qe) Hq
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%	mg/kg	mg/kg	mg/kg	-2
EQL	10	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	2	5	100	5	0.1
AS 2159-2009, Piling - Design and Installation - Soil														5.5-14
NEPM Amendment 2013 EIL (urban residential/public open space) - aged														
NEPM Amendment 2013 EIL (urban residential/public open space) - fresh						4 :	9				9 0			
EPA Vic IWRG621 Cnt B											10,000	40,000		4-9
EPA Vic IWRG621 Cat C		1 1		9 6			1 3				2,500	10,000		4-9
EPA Vic IWRG621 Fill									2		50	450		4-9
NEPM 2013 Table 18(6) ESLs for Urban Res, Coarse Soil		1		0 1			1 3				8			
NEPM 2013 Table 1A(1) HILs Res A Soil		0		1		9 1	7 7		1					
NEPM 2013 Table 1A(1) HILs Res B Soil				9	- 3	14			1					
NEPM 2013 Table 1A(1) HILs Rec C Soil						1			1		9		9	
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil									7				-	

Field ID	Date	Depth	Sample Type														
BH01/0.0-0.1	25/05/2021	0-0.1	Normal	<10	<0.1	×0.1	<0.1	<0.1	< 0.1	<0.1	×0.1	< 0.1	14	<5	<100	0-0	7.6
BH01/0.2-0.3	25/05/2021	0.2 - 0.3	Normal			-	-		-	-	-	-	-0		-	47	-
BH02/0.0-0.1	25/05/2021	0-0.1	Normal	-	- 1	-		-	(3·	-3	-		-	-	-	8	-
BH03/0.0-0.1	25/05/2021	0-0.1	Normal	9 9		-	-	-		-	-		-		-	7	-
BH04/0.0-0.1	25/05/2021	0-0.1	Normal	-	-	-	-	-	-	-	-	-	-	-	-	6	-
BH05/0.0-0.1	25/05/2021	0-0.1	Normal	-	-	12	-	-	-		-	-	-	-	-	10	
BH05/0.1-0.2	25/05/2021	0.1-0.2	Normal		-	-	-	-	-	-		-	-	-	-	14	1-

Table 02 Chemical Testing Results QAQC Samples (Duplicate and Split Samples) Soil

					21-26926	_	21-26926	797926	
		Lab Kepon		21-26926		_			_
		—		BH04/0.0-0.1	210525-5-D02		BH04/0.0-0.1	BH04/0.0-0.1A	\dashv
		M	trix Type				soil	soil	
			Date	25/05/2021	25/05/2021	RPD	25/05/2021	25/05/2021	RPD
		Unit	EQL						
etals		Unit	EQL						
ecans	Aluminium	mg/kg	5	4,100	4,800	16	4,100		_
	Antimony		5		4,800	0	4,100	<10	-
	Artimony	mg/kg	2	6	6	18		62	21
	Barium	mg/kg	5			32	60	68	12
		mg/kg		60	83				
	Beryllium	mg/kg	2	6	S	0	<	<2	
	Boron	mg/kg	10	<10	<10	0	<10	12	18
	Cad mium	mg/kg	0.2	03	0.2	40	0.3	<0.4	
	Chromium (I II+VI)	mg/kg	5	9	11	20	9	12	25
	Cobalt	mg/kg	5	<	<5	0	<5	<	- 0
	Copper	mg/kg	5	27	28	4	27	31	14
	Iron	mg/kg	10	6,900	8,000	15	6,900		
	Lead	mg/kg	5	180	170	6	180	210	15
	Manganese	mg/kg	5	82	97	17	82	110	29
	Mercury	mg/kg	0.05	0.72	0.91	23	0.72	0.9	2
	Molybdenu m	mg/kg	5	<	<	0	<	<	
	Nickel	mg/kg	5	10	12	18	10	14	3.
	Selenium	mg/kg	2	- 3	-3	0	-3	<2	- 0
	Silver	mg/kg	2	6	<	0	<	<2	
	Tin	mg/kg	5	5	5	0	5	<10	
	Vanadium	mg/kg	5	15	18	18	15	17	1
	Zinc	mg/kg	5	230	220	4	230	310	31
н									
	Acenaphthene	mg/kg	0.1	<0.1	<0.1	- 0	<0.1	<0.5	
	Acenaphthylene	mg/kg	0.1	40.1	<0.1	0	<0.1	<05	
	Anthracene	mg/kg	0.1	0.2	<0.1	67	0.2	<0.5	1
	Benz(a) anthracene	mg/kg	0.1	0.8	0.7	13	0.8	0.6	2
			0.1	10	0.7	22	1.0	0.7	31
	Benzo(a) pyrene Benzo(b)fluoranthene	mg/kg	0.1	08	0.8	13	0.8		3
		mg/kg		0.8	0.7	15	0.8		_
	Benzo(b+j)flu oranthene	mg/kg	0.5	07	0.7			<05 <05	3
	Benzo(g,h,i)perylene	mg/kg	0.1			0	0.7		
	Benzo(k)flu oranthene	mg/kg	0.1	0.7	0.7	0	0.7	0.6	1
	Chrysene	mg/kg	0.1	09	0.7	25	0.9	1.0	11
	Diben z(a,h) an thracene	mg/kg	0.1	0.1	0.1	0	0.1	<0.5	- 0
	Fluoranthene	mg/kg	0.1	1.7	1.2	34	1.7	13	2
	Fluorene	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.5	
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	0.7	0.7	0	0.7	<0.5	3.
	Naph th alene	mg/kg	0.1	<0.1	<0.1	0	< 0.1	<0.5	
	Phenanthren e	mg/kg	0.1	0.8	0.4	67	0.8	<0.5	4
	Pyrene	mg/kg	0.1	1.6	1.2	29	1.6	1.4	1
	Benzo(a)pyrene TEQ calc (Half)	mg/kg	0.1	1.4	1.2	15	1.4	11	2
	Benzo(a)pyreneTEQ (LOR)	mg/kg	0.2	1.4	1.2	15	1.4	1.4	- 0
	Benzo(a)pyrene TEQ calc (Zero)	mg/kg	0.1	1.4	1.2	15	1.4	0.8	51
	PAHs (Sum of total)	mg/kg	0.1	10	7.9	23	10	5.6	56
4		0. 0							
	C6-C9	mg/kg	20	<20		-	<20		
	C10-C14	mg/kg	20	<20			<20	-	
	C15-C28	mg/kg	50	71		-	71		
	C29-C36	mg/kg	50	110	-	-	110	-	
	C10-C36 (Sum of total)	mg/kg	50	180	-		180	-	_
-	are and plant or total			- 100			200		_
•	C10-C16 (F2)	mg/kg	20	<20			<20		+
	C10-C16 (F2) C10-C16 (F2 min us Naph thalene)		20	<20 <20	_				-
		mg/kg	50	190		-	<20		-
	C16-C34 (F3)	mg/kg				-	450	-	-
	C34-C40 (F4)	mg/kg	50	<50	-	-	<50		_
	C6-C10 (F1 minus BTEX)	mg/kg	20	<20			<20		-
	C10-C40 (Sum of total)	mg/kg	50	190	-	-	150		-
	C6-C10 (F1)	mg/kg	20	<20			<20		
organi									
	Lanth an um	mg/kg	5	6	6	0	6		-
	Moisture Content (dried @ 103°C)	%	1			-		8.8	-

^{**}PPDs have only been considered where a concentration is greater than 1 times the EQL
***Elevated RFD: are highlighted a per QRCE** in ordine setting (Accordable RFDs to each EQL** multiplier range are: 50(1-10 x EQL); 50 (10-30 x EQL); 50 (> 30 x EQL); 50
***Elevated RFDs are highlighted as per QRCE** in ordine setting (Accordable RFDs are highlighted as a remarked on a per compound basis as methods vary between bloor above. Any methods with the row header relate to those used in the primary blooratory.

APPENDIX F NATA LABORATORY CERTIFICATES OF ANALYSIS

R	Beveridge Williams ,	Chain o	f Custody Form
	development & environment consultants	Job number	2101228
	development a environment canadizante	Laboratory	ALS Water Resources Group
Client	City of Port Phillip	Quote number	2018-085A LTP 1907
Project	Due Dilligence	Project Manager	A.Mellett
Location	351 St Kilda Road, St Kilda	Sampled by	S.Tomkinson/L.Stovell
Turnarou	nd time 24hr	d Comments:	

From	Company	Date	Received by	Company	. 🗦 1 oggi ologi ileta kakaleria ileta kakaleria ileta kaka ileta kala
S.Tamkinson	Beveridge Williams	25/05/2021			* RFV WILL
					DET 11155
					BEVWILL 21 - 26926
					MEL-C-17 Due Date: 31/05/2021
					MEE - 0 - 17 DUG DOLG. 3 1103/202

Quality control		Initial
Sample preservation	Appropriate sample containers used, refrigerated or chilled samples supplied to laboratory	S.T
Sample holding times	Tests conducted within specified holding times	S.T
Final certificates	Re-testing of results as requested. Tests conducted and reported as per CoC form.	S.T

Notes

Matter: S = Soli: GW = Groundwater: W = Water: R = Rinsate | Soluble Heavy Metals: Ag, As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V, Zn

Soli: A-S-BEV-W1 (HM/OCP) | A-S-BEV-W2 (HM/PAH) | A-S-BEV-W3 (HM/PAH/OCP) | A-S-BEV-W4 (HM/TPH/PAH) | A-S-BEV-W5 (EPA S21 w/ extra metals)

Water: A-W-9EV-W1 (EPA Table 2, TDS, pH, anions/cations, lew level: PAH, OCP, TPH) | A-BWANZLL (ANZECC screen, low level metals & organics)

A-BWANZLL (ANZECC screen, low level metals & organics)

Beve	Beveridge Williams										2101228	ļ	
							,	Testing	require	d			
Sample ID	Date sampled	Matrix	No. of containers	A-5-8EV-W5	Heavy Metals	РАН	ТКН	OCP	ОРР	Hď	CEC	ASLP Heavy Metals	ASLP PAH
BH01/0.0-0.1	25/05/2021	5	1	х									
BH01/0.2-0.3	25/05/2021	5	1		х	Х							
BH01/0.4-0.5	25/05/2021	5	1										
BH01/0.8-0.9	25/05/2021	5	1										
BH01/1.0-1.1	25/05/2021	5	1										
BH02/0.0-0.1	25/05/2021	5	1		х	Х	х						
8H02/0.8-0.9	25/05/2021	5	1										
BH03/0.0-0.1	25/05/2021	5	1		×	Х	x						
BH03/0.1-0.2	25/05/2021	5	1										
8H03/0.5-0.6	25/05/2021	S	1										
BH03/0.8-0.9	25/0S/2021	S	1										
BH03/0.9-1.0	25/05/2021	s	1										
8H04/0.0-0.1	25/05/2021	5	1		×	х	x						
BH04/0.3-0.4	25/05/2021	s	1										
BH04/0.6-0.7	25/05/2021	s	1										
BH04/0.9-1.0	25/05/2021	s	1										
BH05/0.0-0.1	25/05/2021	5	1		×	х	х						
BH05/0.1-0.2	25/05/2021	5	1		х	х							
BH05/0.5-0.6	25/05/2021	S	1				,						
BH05/0.6-0.7	25/05/2021	5	1										
BH05/0.8-0.9	25/05/2021	5	1										

Version: 5.0 Approved by: Manager Environment Reviewed: 35/03/2018

Page 1 of 2

Date: 06/04/2017 Next Review: 31/01/2019

Testing required		Job Number 2101228									
	PH CEC	ASLP Heavy Metals	ASLP PAH								
BHO5/1.0-1.1 25/05/2021 S 1											
BH02/0.5-0.6 25/05/2021 S 1											
210525-S-D01 25/05/2021 S 1											
210525-5-D02 25/05/2021 S 1 X X											
210525-S-R801 25/05/2021 R 1											
210525-S-R602 25/05/2021 R 1											
	į										
	<u> </u>										
		1									
			<u> </u>								
	\neg										
	\neg										
	\neg										

Version: 1.0 Approved by: Manager Environment Reviewed: 15/01/2018

Page 2 of 2 Sate: 05/04/2017
Next Review # 31/03/2019

CERTIFICATE OF ANALYSIS

21-26926 Page 1 of 32 Page Batch No: Final Report 898204

Scoresby Laboratory Laboratory Caribbean Business Park, 22 Dalmore Drive, Scoresby, VIC 3179 Address

Phone Client: Beveridge Williams & Co Pty Ltd Fax

Andrew Mellett Contact:

Address: PO Box 61

MALVERN VIC 3144

AUSTRALIA

Client Program Ref: 2101228 Date Sampled: 25-May-2021 ALS Program Ref: **BEVWILL** Date Samples Received: 26-May-2021

PO No: Not Available Date Issued: 01-Jun-2021

The hash (#) below indicates methods n	ot covered by NATA ac	creditation in the performance of	f this service .				
Analysis	Method	Laboratory	Analysis	Method	Laboratory	Analysis	Method	Laboratory
BTEXN	WP074	Scoresby	CHC	WP084	Scoresby	Cyanide	WK026SF	Scoresby
Total Fluoride	QWI-EN.WK040T	Scoresby	HVOL	WP074	Scoresby	MAH	WP125 & WP074	Scoresby
Moisture	WA055	Scoresby	MS Total Metals	WG020B	Scoresby	OCP	WP068A	Scoresby
PAH	WP075B	Scoresby	PCB	WP066	Scoresby	pН	EA002	Scoresby
Phenois(Halo)	WP075A	Scoresby	Phenols(NonHalo)	WP075A	Scoresby	OCP Sum	WP068A	Scoresby
Total Cr 6+ DA	EG048G	Scoresby	TRH F2	# WP071	Scoresby	TRH & TPH (>C10)	WP071	Scoresby
TRH (C6-C10) & F1	WP074 (F1 not NATA)	Scoresby						

Final Report

Contact:

NATA

This document shall not be reproduced, except in full.

Legionella species refers to Legionella species other than Legionella pneumophila

Name	Title	Name	Title	
Chatura Perera	Team Leader Nutrients	Hoa Nguyen	Analyst	
Hao Zhang	Team Leader Organics	Joseph De Alwis	Analyst	
John Earl	Team Leader Metals	Kosta Christopoulos	Deputy Team Leader Organics	

Attachment 3:

 rage.
 rage s or sz

 Batch No:
 21-26926

Report Number: 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

LOR = Limit of reporting. When a reported LOR is higher than the standard LOR, this may be due to high moisture content, insufficient sample or matrix interference.

CAS Number = Chemistry Abstract Services Number. The analytical procedures in this report (including in house methods) are developed from internationally recognised procedures such as those published by USEPA, APHA and NEPM.

				Sample No.	7020373	7020374	7020378	7020380	7020385	7020389
			Cli	ent Sample ID	BH01/0.0-0.1	BH01/0.2-0.3	BH02/0.0-0.1	BH03/0.0-0.1	BH04/0.0-0.1	BH05/0.0-0.1
				Sample Date	25/05/21	25/05/21	25/05/21	25/05/21	25/05/21	25/05/21
				Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Analysis	Analyte	CAS#	LOR							
BTEXN	Benzene	71-43-2	<0.5	mg/kg	< 0.5					
BTEXN	Toluene	108-88-3	<0.5	mg/kg	< 0.5					
BTEXN	Ethyl Benzene	100-41-4	<0.5	mg/kg	< 0.5					
BTEXN	Xylene - m&p	108-38-3 /	<1	mg/kg	<1					
BTEXN	Xylene - O	95-47-6	<0.5	mg/kg	< 0.5					
BTEXN	Total Xylenes	1330-20-7	<1	mg/kg	<1					
BTEXN	BTEX (Sum)	BTEX	<1	mg/kg	<1					
Analysis	Analyte	CAS#	LOR							
CHC	1,2,3,4-Tetrachlorobenzene	634-66-2	<0.1	mg/kg	<0.1					
CHC	1,2,3,5-Tetrachlorbenzene	634-90-2	<0.1	mg/kg	<0.1					
CHC	1,2,3-Trichlorobenzene	87-61-6	<0.1	mg/kg	<0.1					
CHC	1,2,4,5-Tetrachlorobenzene	95-94-3	<0.1	mg/kg	<0.1					
CHC	1,2,4-Trichlorobenzene	120-82-1	<0.1	mg/kg	<0.1					
CHC	1,2-Dichlorobenzene	95-50-1	<0.1	mg/kg	<0.1					
CHC	1,3,5-Trichlorobenzene	108-70-3	<0.1	mg/kg	<0.1					
CHC	1,3-Dichlorobenzene	541-73-1	<0.1	mg/kg	<0.1					
CHC	1,4-Dichlorobenzene	106-46-7	<0.1	mg/kg	<0.1					
CHC	2-Chloronaphthalene	91-58-7	<0.1	mg/kg	<0.1					
CHC	Benzal Chloride	98-87-3	<0.1	mg/kg	<0.1					
CHC	Benzotrichloride	98-07-7	<0.1	mg/kg	<0.1					
CHC	Benzylchloride	100-44-7	<0.1	mg/kg	<0.1					
CHC	Hexachloroethane	67-72-1	<0.1	mg/kg	<0.1					
CHC	Hexachlorobutadiene	87-68-3	<0.1	mg/kg	<0.1					
CHC	Hexachlorocyclopentadiene	77-47-4	<0.1	mg/kg	<0.1					
CHC	Pentachlorobenzene	608-93-5	<0.1	mg/kg	<0.1					
Analysis	Analyte	CAS#	LOR							
HVOL	1,1,1,2-Tetrachloroethane	630-20-6	<0.5	mg/kg	<0.5					

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated. Fater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

alculated recults are hased on raw data

 rage.
 rage 4 or 32

 Batch No:
 21-26926

 Report Number:
 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

				Sample No.	7020373	7020374	7020378	7020380	7020385	7020389
			CI	ent Sample ID	BH01/0.0-0.1	BH01/0.2-0.3	BH02/0.0-0.1	BH03/0.0-0.1	BH04/0.0-0.1	BH05/0.0-0.1
				Sample Date	25/05/21	25/05/21	25/05/21	25/05/21	25/05/21	25/05/21
				Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
HVOL	1,1,2,2-Tetrachloroethane	79-34-5	<0.5	mg/kg	<0.5					
HVOL	1,1-Dichloroethane	75-34-3	<0.5	mg/kg	<0.5					
HVOL	1,1-Dichloroethene	75-35-4	<0.5	mg/kg	<0.5					
HVOL	1,1-Dichloropropene	563-58-6	< 0.5	mg/kg	<0.5					
HVOL	1,2,3-Trichloropropane	96-18-4	<0.5	mg/kg	<0.5					
HVOL	1,2-Dibromo-3-Chloropropane	96-12-8	<0.5	mg/kg	<0.5					
HVOL	1,2-Dichloroethene [cis]	540-59-0(cis)	< 0.5	mg/kg	<0.5					
HVOL	1,2-Dichloroethene [trans]	540-59-0(trans)	<0.5	mg/kg	<0.5					
HVOL	1,2-Dichloroethane	107-06-2	<0.5	mg/kg	<0.5					
HVOL	1,2-Dichloropropane	78-87-5	<0.5	mg/kg	<0.5					
HVOL	1,3-Dichloropropane	142-28-9	<0.5	mg/kg	<0.5					
HVOL	1,3-Dichloropropene [cis]	10061-01-5	<0.5	mg/kg	<0.5					
HVOL	1,3-Dichloropropene [trans]	10061-02-6	< 0.5	mg/kg	<0.5					
HVOL	2,2-Dichloropropane	594-20-7	< 0.5	mg/kg	<0.5					
HVOL	2-Chlorotoluene	95-49-8	< 0.5	mg/kg	<0.5					
HVOL	4-Chlorotoluene	106-43-4	<0.5	mg/kg	<0.5					
HVOL	Bromochloromethane	74-97-5	< 0.5	mg/kg	<0.5					
HVOL	Bromodichloromethane	75-27-4	<0.5	mg/kg	<0.5					
HVOL	Bromobenzene	108-86-1	<0.5	mg/kg	<0.5					
HVOL	Bromoform (Tribromomethane)	75-25-2	<0.5	mg/kg	<0.5					
HVOL	Carbon Tetrachloride	56-23-5	<0.5	mg/kg	<0.5					
HVOL	Chloroform (Trichloromethane)	67-66-3	<0.5	mg/kg	<0.5					
HVOL	Chlorobenzene	108-90-7	<0.5	mg/kg	<0.5					
HVOL	Dibromochloromethane	124-48-1	<0.5	mg/kg	<0.5					
HVOL	Dibromomethane	74-95-3	<0.5	mg/kg	<0.5					
HVOL	1,2-Dibromoethane	106-93-4	<0.5	mg/kg	<0.5					
HVOL	Dichloromethane	75-09-2	<1	mg/kg	<1					
HVOL	Trichlorofluoromethane (CFC11)	75-69-4	<2	mg/kg	<2					
HVOL	Tetrachloroethene	127-18-4	<0.5	mg/kg	<0.5					
HVOL	Vinyl Chloride (Monomer)	75-01-4	<1	mg/kg	<1					
HVOL	1.1.1-Trichloroethane	71-55-6	<0.5	mg/kg	<0.5					

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.
/ater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 rage.
 rage 5 or 32

 Batch No:
 21-26926

 Report Number:
 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

				Sample No.	7020373	7020374	7020378	7020380	7020385	7020389
			Cli	ent Sample ID	BH01/0.0-0.1	BH01/0.2-0.3	BH02/0.0-0.1	BH03/0.0-0.1	BH04/0.0-0.1	BH05/0.0-0.1
				Sample Date	25/05/21	25/05/21	25/05/21	25/05/21	25/05/21	25/05/21
				Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
HVOL	1,1,2-Trichloroethane	79-00-5	<0.5	mg/kg	<0.5					
HVOL	Trichloroethene	79-01-6	<0.5	mg/kg	<0.5					
Analysis	Analyte	CAS#	LOR							
MAH	Styrene	100-42-5	<0.5	mg/kg	<0.5					
MAH	Cumene	98-82-8	<0.5	mg/kg	<0.5					
MAH	1,2,4-Trimethylbenzene	95-63-6	<0.5	mg/kg	<0.5					
Analysis	Analyte	CAS#	LOR							
OCP	BHC (alpha isomer)	319-84-6	<0.05	mg/kg	< 0.05					
OCP	a-Endosulphan	959-98-8	<0.05	mg/kg	< 0.05					
OCP	Aldrin	309-00-2	<0.05	mg/kg	< 0.05					
OCP	BHC (beta isomer)	319-85-7	< 0.05	mg/kg	< 0.05					
OCP	b-Endosulphan	33213-65-9	<0.05	mg/kg	< 0.05					
OCP	Chlordane	57-74-9	<0.05	mg/kg	< 0.05					
OCP	cis-Chlordane	5103-71-9	< 0.05	mg/kg	< 0.05					
OCP	trans-Chlordane	5103-74-2	< 0.05	mg/kg	< 0.05					
OCP	BHC (delta isomer)	319-86-8	< 0.05	mg/kg	< 0.05					
OCP	DDD	72-54-8	< 0.05	mg/kg	< 0.05					
OCP	DDE	72-55-9	<0.05	mg/kg	< 0.05					
OCP	DDT	50-29-3	< 0.05	mg/kg	< 0.05					
OCP	Dieldrin	60-57-1	<0.05	mg/kg	< 0.05					
OCP	Sum of alpha-, beta- and Endosulphan	115-29-7	<0.05	mg/kg	< 0.05					
OCP	Endosulfan Sulfate	1031-07-8	<0.05	mg/kg	< 0.05					
OCP	Endrin	72-20-8	< 0.05	mg/kg	< 0.05					
OCP	Endrin Aldehyde	7421-93-4	< 0.05	mg/kg	< 0.05					
OCP	Endrin Ketone	53494-70-5	<0.05	mg/kg	< 0.05					
OCP	Hexachlorobenzene	118-74-1	<0.05	mg/kg	< 0.05					
OCP	Heptachlor Epoxide	1024-57-3	<0.05	mg/kg	< 0.05					
OCP	Heptachlor	76-44-8	<0.05	mg/kg	< 0.05					
OCP	BHC (gamma isomer) [Lindane]	58-89-9	<0.05	mg/kg	< 0.05					
OCP	Methoxychlor	72-43-5	<0.05	mg/kg	< 0.05					
OCP	Oxychlordane	27304-13-8	< 0.05	mg/kg	< 0.05					

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.
(ater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 rage.
 rage 6 or 32

 Batch No:
 21-26926

Report Number: 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

				Sample No.	7020373	7020374	7020378	7020380	7020385	7020389
			Cli	ent Sample ID	BH01/0.0-0.1	BH01/0.2-0.3	BH02/0.0-0.1	BH03/0.0-0.1	BH04/0.0-0.1	BH05/0.0-0.1
				Sample Date	25/05/21	25/05/21	25/05/21	25/05/21	25/05/21	25/05/21
				Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
OCP	Sum of DDD, DDE and DDT	DDT+DDE+DD	<0.05	mg/kg	<0.05					
OCP	Sum of Aldrin and Dieldrin	309-00-2 +	< 0.05	mg/kg	< 0.05					
OCP Sum	Sum of Other Organochlorine Pesticides	EPAVic_otherO	<0.05	mg/kg	< 0.05					
Analysis	Analyte	CAS#	LOR							
PAH	Acenaphthene	83-32-9	<0.1	mg/kg	<0.1	<0.1	<0.2 LORR	<0.1	<0.1	<0.2 LORR
PAH	Acenaphthylene	208-96-8	<0.1	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1	<0.2 LORR
PAH	Anthracene	120-12-7	<0.1	mg/kg	<0.1	<0.1	0.4	<0.1	0.2	<0.2 LORR
PAH	Benz(a)anthracene	56-55-3	<0.1	mg/kg	0.5	0.2	1.6	0.3	0.8	<0.2 LORR
PAH	Benzo(a)pyrene	50-32-8	<0.1	mg/kg	0.5	0.2	1.7	0.4	1.0	<0.2 LORR
PAH	Benzo(b)fluoranthene	205-99-2	<0.1	mg/kg	0.4	0.2	1.3	0.3	0.8	<0.2 LORR
PAH	Benzo(g,h,i)perylene	191-24-2	<0.1	mg/kg	0.4	0.2	1.5	0.3	0.7	<0.2 LORR
PAH	Benzo(k)fluoranthene	207-08-9	<0.1	mg/kg	0.4	0.2	1.2	0.3	0.7	<0.2 LORR
PAH	Chrysene	218-01-9	<0.1	mg/kg	0.4	0.2	1.3	0.3	0.9	<0.2 LORR
PAH	Dibenz(a,h)anthracene	53-70-3	<0.1	mg/kg	<0.1	<0.1	0.4	<0.1	0.1	<0.2 LORR
PAH	Fluoranthene	206-44-0	<0.1	mg/kg	0.9	0.3	2.9	0.6	1.7	<0.2 LORR
PAH	Fluorene	86-73-7	<0.1	mg/kg	<0.1	<0.1	<0.2 LORR	<0.1	<0.1	<0.2 LORR
PAH	Indeno(1,2,3-cd)pyrene	193-39-5	<0.1	mg/kg	0.4	0.1	1.1	0.3	0.7	<0.2 LORR
PAH	Naphthalene	91-20-3	<0.1	mg/kg	<0.1	<0.1	<0.2 LORR	<0.1	<0.1	<0.2 LORR
PAH	Phenanthrene	85-01-8	<0.1	mg/kg	0.2	<0.1	1.5	0.2	0.8	<0.2 LORR
PAH	Pyrene	129-00-0	<0.1	mg/kg	0.9	0.3	3.0	0.6	1.6	<0.2 LORR
PAH	Total PAH	TOTALPAH	<0.1	mg/kg	5.0	1.9	18	3.6	10	<0.2 LORR
PAH	BaP TEQ (zero)	BaP_TEQ_0xE	<0.1	mg/kg	0.7	0.3	2.6	0.5	1.4	<0.1
PAH	BaP TEQ (half LOR)	BaP_TEQ_0.5x	<0.1	mg/kg	0.7	0.3	2.6	0.6	1.4	0.2
PAH	BaP TEQ (LOR)	BaP_TEQ_1.0x	0.2	mg/kg	0.8	0.4	2.6	0.6	1.4	0.5
Analysis	Analyte	CAS#	LOR							
PCB	Aroclor 1016	12674-11-2	<0.1	mg/kg	<0.1					
PCB	Aroclor 1221	11104-28-2	<0.1	mg/kg	<0.1					
PCB	Aroclor 1232	11141-16-5	<0.1	mg/kg	<0.1					
PCB	Aroclor 1242	53469-21-9	<0.1	mg/kg	<0.1					
PCB	Aroclor 1248	12672-29-6	<0.1	mg/kg	<0.1					
PCB	Aroclor 1254	11097-69-1	<0.1	mg/kg	<0.1					

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.
(ater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 rage.
 rage / or 32

 Batch No:
 21-26926

Report Number: 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

				Sample No.	7020373	7020374	7020378	7020380	7020385	7020389
			Cli	ent Sample ID	BH01/0.0-0.1	BH01/0.2-0.3	BH02/0.0-0.1	BH03/0.0-0.1	BH04/0.0-0.1	BH05/0.0-0.1
				Sample Date	25/05/21	25/05/21	25/05/21	25/05/21	25/05/21	25/05/21
				Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
PCB	Aroclor 1260	11096-82-5	<0.1	mg/kg	<0.1					
PCB	Total PCBs	1336-36-3	<0.1	mg/kg	<0.1					
Analysis	Analyte	CAS#	LOR							
Phenols(Halo)	4-Chloro-3-Methylphenol	59-50-7	<0.5	mg/kg	< 0.5					
Phenols(Halo)	2-Chlorophenol	95-57-8	<0.5	mg/kg	<0.5					
Phenols(Halo)	2,4-Dichlorophenol	120-83-2	<0.5	mg/kg	<0.5					
Phenols(Halo)	2,6-Dichlorophenol	87-65-0	<0.5	mg/kg	<0.5					
Phenols(Halo)	Pentachlorophenol	87-86-5	<0.5	mg/kg	< 0.5					
Phenols(Halo)	2,3,4,5-Tetrachlorophenol	4901-51-3	<0.5	mg/kg	<0.5					
Phenols(Halo)	2,3,4,6-Tetrachlorophenol	58-90-2	<0.5	mg/kg	<0.5					
Phenols(Halo)	2,3,5,6-Tetrachlorophenol	935-95-5	<0.5	mg/kg	<0.5					
Phenols(Halo)	2,4,5-Trichlorophenol	95-95-4	<0.5	mg/kg	<0.5					
Phenols(Halo)	2,4,6-Trichlorophenol	88-06-2	<0.5	mg/kg	< 0.5					
Phenols(Halo)	Total Phenols (Halogenated)	64743-03-9(Hal	<0.5	mg/kg	<0.5					
Analysis	Analyte	CAS#	LOR							
Phenols(NonHalo)	Phenol	108-95-2	<0.5	mg/kg	< 0.5					
Phenols(NonHalo)	Total Cresols	1319-77-3	<1	mg/kg	<1					
Phenols(NonHalo)	2,4-Dimethylphenol	105-67-9	<0.5	mg/kg	<0.5					
Phenols(NonHalo)	2,4-Dinitrophenol	51-28-5	<30	mg/kg	<30					
Phenols(NonHalo)	2-Methyl-4,6-Dinitrophenol	534-52-1	<10	mg/kg	<10					
Phenols(Non Halo)	2-Nitrophenol	88-75-5	< 0.5	mg/kg	< 0.5					
Phenols(NonHalo)	4-Nitrophenol	100-02-7	<0.5	mg/kg	< 0.5					
Phenols(NonHalo)	2-Cyclohexyl-4,6-Dinitrophenol	131-89-5	<30	mg/kg	<30					
Phenols(NonHalo)	Dinoseb	88-85-7	<10	mg/kg	<10					
Phenols(NonHalo)	Total Phenols (non Halogenated)	64743-03-9(Non	<30	mg/kg	<30					
Analysis	Analyte	CAS#	LOR							
Moisture	Moisture %	MOISTCONTE	<2	% w/wet w	14					
pН	pH, units	pH_Lab	<0.1	Units	7.6					
Total Fluoride	Total Fluoride, as F	16984-48-8	<100	mg/kg	<100					
Cyanide	Cyanide, as CN	57-12-5	<5	mg/kg	<5					
Total Cr 6+ DA	Hexavalent Chromium (Total) Soil DA	18540-29-9	<1	mg/kg	<1					

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.
/ater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 rage.
 rage 8 or 32

 Batch No:
 21-26926

 Report Number:
 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

				Sample No.	7020373	7020374	7020378	7020380	7020385	7020389
			Cli	ent Sample ID	BH01/0.0-0.1	BH01/0.2-0.3	BH02/0.0-0.1	BH03/0.0-0.1	BH04/0.0-0.1	BH05/0.0-0.1
				Sample Date	25/05/21	25/05/21	25/05/21	25/05/21	25/05/21	25/05/21
				Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Analysis	Analyte	CAS#	LOR							
MS Total Metals	Aluminium	7429-90-5	<5	mg/kg		18000	7500	4300	4100	5600
MS Total Metals	Antimony	7440-36-0	<5	mg/kg	<5	<5	<5	<5	<5	<5
MS Total Metals	Arsenic	7440-38-2	<5	mg/kg	<5	18	8	<5	<5	<5
MS Total Metals	Barium	7440-39-3	<5	mg/kg	45	45	76	46	60	38
MS Total Metals	Beryllium	7440-41-7	<5	mg/kg	<5	<5	<5	<5	<5	<5
MS Total Metals	Boron	7440-42-8	<10	mg/kg	<10	<10	19	<10	<10	<10
MS Total Metals	Cadmium	7440-43-9	<0.2	mg/kg	<0.2	<0.2	0.3	0.2	0.3	<0.2
MS Total Metals	Chromium	7440-47-3	<5	mg/kg	22	67	17	10	9	11
MS Total Metals	Cobalt	7440-48-4	<5	mg/kg	5	5	<5	<5	<5	<5
MS Total Metals	Copper	7440-50-8	<5	mg/kg	21	11	57	26	27	26
MS Total Metals	Iron	7439-89-6	<10	mg/kg		100000	10000	6500	6900	6200
MS Total Metals	Lanthanum	7439-91-0	<5	mg/kg		47	8	7	6	10
MS Total Metals	Lead	7439-92-1	<5	mg/kg	100	57	140	140	180	100
MS Total Metals	Manganese	7439-96-5	<5	mg/kg	110	110	120	71	82	45
MS Total Metals	Mercury	7439-97-6	< 0.05	mg/kg	0.11	0.20	0.60	0.12	0.72	0.06
MS Total Metals	Molybdenum	7439-98-7	<5	mg/kg	<5	<5	<5	<5	<5	<5
MS Total Metals	Nickel	7440-02-0	<5	mg/kg	16	13	15	11	10	7
MS Total Metals	Selenium	7782-49-2	<3	mg/kg	<3	<3	<3	<3	<3	<3
MS Total Metals	Silver	7440-22-4	<5	mg/kg	<5	<5	<5	<5	<5	<5
MS Total Metals	Tin	7440-31-5	<5	mg/kg	<5	<5	9	<5	5	<5
MS Total Metals	Vanadium	7440-62-2	<5	mg/kg	42	150	26	13	15	15
MS Total Metals	Zinc	7440-66-6	<5	mg/kg	97	30	260	160	230	81
Analysis	Analyte	CAS#	LOR							
TRH (C6-C10) &	TPHC6-C9	C6-C9	<20	mg/kg	<20		<20	<20	<20	<20
TRH (C6-C10) &	TRHC6-C10	C6-C10	<20	mg/kg	<20		<20	<20	<20	<20
TRH (C6-C10) &	TRHC6-C10 minus BTEX	F1-BTEX	<20	mg/kg	<20		<20	<20	<20	<20
Analysis	Analyte	CAS#	LOR							
TRH F2	TRH>C10-C16 minus Naphthalene	F2-NAPHTHAL	<20	mg/kg	<20		<20	<20	<20	<20
TRH & TPH	TPH C10-C14	C10-C14	<20	mg/kg	<20		<20	<20	<20	<20
TRH & TPH	TPH C15-C28	C15-C28	<50	mg/kg	<50		200	93	71	61

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.
/ater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 Page.
 Page 9 or 32

 Batch No:
 21-26926

Report Number: 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

				Sample No.	7020373	7020374	7020378	7020380	7020385	7020389
	Client Sample					BH01/0.2-0.3	BH02/0.0-0.1	BH03/0.0-0.1	BH04/0.0-0.1	BH05/0.0-0.1
	Sample Da					25/05/21	25/05/21	25/05/21	25/05/21	25/05/21
				Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
TRH & TPH	TPH C29-C36	C29-C36	<50	mg/kg	<50		320	160	110	270
TRH & TPH	Sum of TPH C10-C36	C10-C36	<50	mg/kg	<50		520	250	180	330
TRH & TPH	TRH>C10-C16	C10-C16	<20	mg/kg	<20		<20	<20	<20	<20
TRH & TPH	TRH>C16-C34	C16-C34	<50	mg/kg	<50		420	200	150	240
TRH & TPH	TRH>C34-C40	C34-C40	<50	mg/kg	<50		130	68	<50	130
TRH & TPH	Sum of TRH>C10-C40	C10-C40	<50	mg/kg	<50		550	270	150	370

LORR Limit of Reporting has been raised due to high moisture content, insufficient sample or matrix interference.

Page 10 of 32 Page. 21-26926 Batch No:

Report Number: 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

LOR = Limit of reporting. When a reported LOR is higher than the standard LOR, this may be due to high moisture content, insufficient sample or matrix interference. CAS Number = Chemistry Abstract Services Number. The analytical procedures in this report (including in house methods) are developed from internationally recognised procedures such as those published by USEPA, APHA and NEPM.

				Sample No.	7020390	7020397
			Cli	ent Sample ID	BH05/0.1-0.2	210525-S-D02
				Sample Date	25/05/21	25/05/21
				Sample Type	SOIL	SOIL
Analysis	Analyte	CAS#	LOR			
PAH	Acenaphthene	83-32-9	<0.1	mg/kg	<0.1	<0.1
PAH	Acenaphthylene	208-96-8	<0.1	mg/kg	<0.1	<0.1
PAH	Anthracene	120-12-7	<0.1	mg/kg	<0.1	<0.1
PAH	Benz(a)anthracene	56-55-3	<0.1	mg/kg	<0.1	0.7
PAH	Benzo(a)pyrene	50-32-8	<0.1	mg/kg	<0.1	0.8
PAH	Benzo(b)fluoranthene	205-99-2	<0.1	mg/kg	<0.1	0.7
PAH	Benzo(g,h,i)perylene	191-24-2	<0.1	mg/kg	<0.1	0.7
PAH	Benzo(k)fluoranthene	207-08-9	<0.1	mg/kg	<0.1	0.7
PAH	Chrysene	218-01-9	<0.1	mg/kg	<0.1	0.7
PAH	Dibenz(a,h)anthracene	53-70-3	<0.1	mg/kg	<0.1	0.1
PAH	Fluoranthene	206-44-0	<0.1	mg/kg	<0.1	1.2
PAH	Fluorene	86-73-7	<0.1	mg/kg	<0.1	<0.1
PAH	Indeno(1,2,3-cd)pyrene	193-39-5	<0.1	mg/kg	<0.1	0.7
PAH	Naphthalene	91-20-3	<0.1	mg/kg	<0.1	<0.1
PAH	Phenanthrene	85-01-8	<0.1	mg/kg	<0.1	0.4
PAH	Pyrene	129-00-0	<0.1	mg/kg	<0.1	1.2
PAH	Total PAH	TOTALPAH	<0.1	mg/kg	<0.1	7.9
PAH	BaP TEQ (zero)	BaP_TEQ_0xE	<0.1	mg/kg	<0.1	1.2
PAH	BaP TEQ (half LOR)	BaP_TEQ_0.5x	<0.1	mg/kg	0.1	1.2
PAH	BaP TEQ (LOR)	BaP_TEQ_1.0x	0.2	mg/kg	0.2	1.2
Analysis	Analyte	CAS#	LOR			
MS Total Metals	Aluminium	7429-90-5	<5	mg/kg	7000	4800
MS Total Metals	Antimony	7440-36-0	<5	mg/kg	<5	<5
MS Total Metals	Arsenic	7440-38-2	<5	mg/kg	<5	6
MS Total Metals	Barium	7440-39-3	<5	mg/kg	24	83
MS Total Metals	Beryllium	7440-41-7	<5	mg/kg	<5	<5
MS Total Metals	Boron	7440-42-8	<10	mg/kg	<10	<10

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated. (ater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated. M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate. alculated regulte are based on raw data

 Page.
 Page TI of 32

 Batch No:
 21-26926

Report Number: 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

				Sample No.	7020390	7020397
			Clie	ent Sample ID	BH05/0.1-0.2	210525-S-D02
				Sample Date	25/05/21	25/05/21
				Sample Type	SOIL	SOIL
MS Total Metals	Cadmium	7440-43-9	<0.2	mg/kg	<0.2	0.2
MS Total Metals	Chromium	7440-47-3	<5	mg/kg	10	11
MS Total Metals	Cobalt	7440-48-4	<5	mg/kg	<5	<5
MS Total Metals	Copper	7440-50-8	<5	mg/kg	<5	28
MS Total Metals	Iron	7439-89-6	<10	mg/kg	6000	8000
MS Total Metals	Lanthanum	7439-91-0	<5	mg/kg	14	6
MS Total Metals	Lead	7439-92-1	<5	mg/kg	30	170
MS Total Metals	Manganese	7439-96-5	<5	mg/kg	33	97
MS Total Metals	Mercury	7439-97-6	<0.05	mg/kg	< 0.05	0.91
MS Total Metals	Molybdenum	7439-98-7	<5	mg/kg	<5	<5
MS Total Metals	Nickel	7440-02-0	<5	mg/kg	<5	12
MS Total Metals	Selenium	7782-49-2	<3	mg/kg	<3	<3
MS Total Metals	Silver	7440-22-4	<5	mg/kg	<5	<5
MS Total Metals	Tin	7440-31-5	<5	mg/kg	<5	5
MS Total Metals	Vanadium	7440-62-2	<5	mg/kg	18	18
MS Total Metals	Zinc	7440-66-6	<5	mg/kg	26	220

 Page
 Page 12 or 32

 Batch No:
 21-26926

 Report Number:
 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

QUALITY CONTROL - BLANKS

QC Blanks are an 'analyte free' matrix in which all applicable reagents have been added in the same proportion as in standard samples and are an internal monitor for laboratory contamination.

					Value
Lab Sample ID	Client Sample ID	Analysis	Analyte		
7024918	QC - Blank	Total Fluoride	Total Fluoride, as F	mg/kg	<100
7025620	QC - Blank	Total Cr 6+ DA	Hexavalent Chromium (Total) Soil DA	mg/kg	<1
Lab Sample ID	Client Sample ID	Analysis	Analyte		
7022795	QC - Blank	MS Total Metals	Aluminium	mg/kg	<5
7022795	QC - Blank	MS Total Metals	Antimony	mg/kg	<5
7022795	QC - Blank	MS Total Metals	Arsenic	mg/kg	<5
7022795	QC - Blank	MS Total Metals	Barium	mg/kg	<5
7022795	QC - Blank	MS Total Metals	Beryllium	mg/kg	<5
7022795	QC - Blank	MS Total Metals	Boron	mg/kg	<10
7022795	QC - Blank	MS Total Metals	Cadmium	mg/kg	<0.2
7022795	QC - Blank	MS Total Metals	Chromium	mg/kg	<5
7022795	QC - Blank	MS Total Metals	Cobalt	mg/kg	<5
7022795	QC - Blank	MS Total Metals	Copper	mg/kg	<5
7022795	QC - Blank	MS Total Metals	Iron	mg/kg	<10
7022795	QC - Blank	MS Total Metals	Lanthanum	mg/kg	<5
7022795	QC - Blank	MS Total Metals	Lead	mg/kg	<5
7022795	QC - Blank	MS Total Metals	Manganese	mg/kg	<5
7022795	QC - Blank	MS Total Metals	Mercury	mg/kg	<0.05
7022795	QC - Blank	MS Total Metals	Molybdenum	mg/kg	<5
7022795	QC - Blank	MS Total Metals	Nickel	mg/kg	<5
7022795	QC - Blank	MS Total Metals	Selenium	mg/kg	<3
7022795	QC - Blank	MS Total Metals	Silver	mg/kg	<5
7022795	QC - Blank	MS Total Metals	Tin	mg/kg	<5
7022795	QC - Blank	MS Total Metals	Vanadium	mg/kg	<5
7022795	QC - Blank	MS Total Metals	Zinc	mg/kg	<5
7025456	QC - Blank	MS Total Metals	Aluminium	mg/kg	<5
7025456	QC - Blank	MS Total Metals	Antimony	mg/kg	<5

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated. Fater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 rage.
 rage 13 or 32

 Batch No:
 21-26926

Report Number: 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

					Value
7025456	QC - Blank	MS Total Metals	Arsenic	mg/kg	<5
7025456	QC - Blank	MS Total Metals	Barium	mg/kg	<5
7025456	QC - Blank	MS Total Metals	Beryllium	mg/kg	<5
7025456	QC - Blank	MS Total Metals	Boron	mg/kg	<10
7025456	QC - Blank	MS Total Metals	Cadmium	mg/kg	<0.2
7025456	QC - Blank	MS Total Metals	Chromium	mg/kg	<5
7025456	QC - Blank	MS Total Metals	Cobalt	mg/kg	<5
7025456	QC - Blank	MS Total Metals	Copper	mg/kg	<5
7025456	QC - Blank	MS Total Metals	Iron	mg/kg	<10
7025456	QC - Blank	MS Total Metals	Lanthanum	mg/kg	<5
7025456	QC - Blank	MS Total Metals	Lead	mg/kg	<5
7025456	QC - Blank	MS Total Metals	Manganese	mg/kg	<5
7025456	QC - Blank	MS Total Metals	Mercury	mg/kg	<0.05
7025456	QC - Blank	MS Total Metals	Molybdenum	mg/kg	<5
7025456	QC - Blank	MS Total Metals	Nickel	mg/kg	<5
7025456	QC - Blank	MS Total Metals	Selenium	mg/kg	<3
7025456	QC - Blank	MS Total Metals	Silver	mg/kg	<5
7025456	QC - Blank	MS Total Metals	Tin	mg/kg	<5
7025456	QC - Blank	MS Total Metals	Vanadium	mg/kg	<5
7025456	QC - Blank	MS Total Metals	Zinc	mg/kg	<5
7027190	QC - Blank	MS Total Metals	Aluminium	mg/kg	<5
7027190	QC - Blank	MS Total Metals	Antimony	mg/kg	<5
7027190	QC - Blank	MS Total Metals	Arsenic	mg/kg	<5
7027190	QC - Blank	MS Total Metals	Barium	mg/kg	<5
7027190	QC - Blank	MS Total Metals	Beryllium	mg/kg	<5
7027190	QC - Blank	MS Total Metals	Boron	mg/kg	<10
7027190	QC - Blank	MS Total Metals	Cadmium	mg/kg	<0.2
7027190	QC - Blank	MS Total Metals	Chromium	mg/kg	<5
7027190	QC - Blank	MS Total Metals	Cobalt	mg/kg	<5
7027190	QC - Blank	MS Total Metals	Copper	mg/kg	<5
7027190	QC - Blank	MS Total Metals	Iron	mg/kg	<10
7027190	QC - Blank	MS Total Metals	Lanthanum	mg/kg	<5
7027190	QC - Blank	MS Total Metals	Lead	mg/kg	<5
7027190	QC - Blank	MS Total Metals	Manganese	mg/kg	<5

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated. Fater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 rage.
 rage 14 or 32

 Batch No:
 21-26926

Report Number: 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

					Value
7027190	QC - Blank	MS Total Metals	Mercury	mg/kg	<0.05
7027190	QC - Blank	MS Total Metals	Molybdenum	mg/kg	<5
7027190	QC - Blank	MS Total Metals	Nickel	mg/kg	<5
7027190	QC - Blank	MS Total Metals	Selenium	mg/kg	<3
7027190	QC - Blank	MS Total Metals	Silver	mg/kg	<5
7027190	QC - Blank	MS Total Metals	Tin	mg/kg	<5
7027190	QC - Blank	MS Total Metals	Vanadium	mg/kg	<5
7027190	QC - Blank	MS Total Metals	Zinc	mg/kg	<5
Lab Sample ID	Client Sample ID	Analysis	Analyte		
7024591	QC - Blank	MAH	Styrene	mg/kg	<0.5
7024591	QC - Blank	MAH	Cumene	mg/kg	<0.5
7024591	QC - Blank	MAH	1,2,4-Trimethylbenzene	mg/kg	<0.5
Lab Sample ID	Client Sample ID	Analysis	Analyte		
7023520	QC - Blank	BTEXN	Benzene	mg/kg	<0.5
7023520	QC - Blank	BTEXN	Toluene	mg/kg	<0.5
7023520	QC - Blank	BTEXN	Ethyl Benzene	mg/kg	<0.5
7023520	QC - Blank	BTEXN	Xylene - m&p	mg/kg	<1
7023520	QC - Blank	BTEXN	Xylene - O	mg/kg	<0.5
7023520	QC - Blank	BTEXN	Total Xylenes	mg/kg	<1
7023520	QC - Blank	BTEXN	BTEX (Sum)	mg/kg	<1
Lab Sample ID	Client Sample ID	Analysis	Analyte		
7023535	QC - Blank	TRH (C6-C10) & F1	TPHC6-C9	mg/kg	<20
7023535	QC - Blank	TRH (C6-C10) & F1	TRHC6-C10	mg/kg	<20
7023535	QC - Blank	TRH (C6-C10) & F1	TRHC6-C10 minus BTEX	mg/kg	<20
Lab Sample ID	Client Sample ID	Analysis	Analyte		
7023541	QC - Blank	TRH & TPH (>C10)	TPH C10-C14	mg/kg	<20
7023541	QC - Blank	TRH & TPH (>C10)	TPH C15-C28	mg/kg	<50
7023541	QC - Blank	TRH & TPH (>C10)	TPH C29-C36	mg/kg	<50
7023541	QC - Blank	TRH & TPH (>C10)	Sum of TPH C10-C36	mg/kg	<50
7023541	QC - Blank	TRH & TPH (>C10)	TRH>C10-C16	mg/kg	<20
7023541	QC - Blank	TRH & TPH (>C10)	TRH>C16-C34	mg/kg	<50
7023541	QC - Blank	TRH & TPH (>C10)	TRH>C34-C40	mg/kg	<50
7023541	QC - Blank	TRH & TPH (>C10)	Sum of TRH>C10-C40	mg/kg	<50
Lab Sample ID	Client Sample ID	Analysis	Analyte		

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated. Vater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 Page.
 Page 15 of 32

 Batch No:
 21-26926

Report Number: 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

					Value
7022680	QC - Blank	PAH	Acenaphthene	mg/kg	<0.1
7022680	QC - Blank	PAH	Acenaphthylene	mg/kg	<0.1
7022680	QC - Blank	PAH	Anthracene	mg/kg	<0.1
7022680	QC - Blank	PAH	Benz(a)anthracene	mg/kg	<0.1
7022680	QC - Blank	PAH	Benzo(a)pyrene	mg/kg	<0.1
7022680	QC - Blank	PAH	Benzo(b)fluoranthene	mg/kg	<0.1
7022680	QC - Blank	PAH	Benzo(g,h,i)perylene	mg/kg	<0.1
7022680	QC - Blank	PAH	Benzo(k)fluoranthene	mg/kg	<0.1
7022680	QC - Blank	PAH	Chrysene	mg/kg	<0.1
7022680	QC - Blank	PAH	Dibenz(a,h)anthracene	mg/kg	<0.1
7022680	QC - Blank	PAH	Fluoranthene	mg/kg	<0.1
7022680	QC - Blank	PAH	Fluorene	mg/kg	<0.1
7022680	QC - Blank	PAH	Indeno(1,2,3-cd)pyrene	mg/kg	<0.1
7022680	QC - Blank	PAH	Naphthalene	mg/kg	<0.1
7022680	QC - Blank	PAH	Phenanthrene	mg/kg	<0.1
7022680	QC - Blank	PAH	Pyrene	mg/kg	<0.1
7022680	QC - Blank	PAH	Total PAH	mg/kg	<0.1
7022680	QC - Blank	PAH	BaP TEQ (zero)	mg/kg	<0.1
7022680	QC - Blank	PAH	BaP TEQ (half LOR)	mg/kg	0.1
7022680	QC - Blank	PAH	BaP TEQ (LOR)	mg/kg	0.2
7022689	QC - Blank	PAH	Acenaphthene	mg/kg	<0.1
7022689	QC - Blank	PAH	Acenaphthylene	mg/kg	<0.1
7022689	QC - Blank	PAH	Anthracene	mg/kg	<0.1
7022689	QC - Blank	PAH	Benz(a)anthracene	mg/kg	<0.1
7022689	QC - Blank	PAH	Benzo(a)pyrene	mg/kg	<0.1
7022689	QC - Blank	PAH	Benzo(b)fluoranthene	mg/kg	<0.1
7022689	QC - Blank	PAH	Benzo(g,h,i)perylene	mg/kg	<0.1
7022689	QC - Blank	PAH	Benzo(k)fluoranthene	mg/kg	<0.1
7022689	QC - Blank	PAH	Chrysene	mg/kg	<0.1
7022689	QC - Blank	PAH	Dibenz(a,h)anthracene	mg/kg	<0.1
7022689	QC - Blank	PAH	Fluoranthene	mg/kg	<0.1
7022689	QC - Blank	PAH	Fluorene	mg/kg	<0.1
7022689	QC - Blank	PAH	Indeno(1,2,3-cd)pyrene	mg/kg	<0.1
7022689	QC - Blank	PAH	Naphthalene	mg/kg	<0.1

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated. Fater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 Page
 Page 16 of 32

 Batch No:
 21-26926

 Report Number:
 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

					Value
7022689	QC - Blank	PAH	Phenanthrene	mg/kg	<0.1
7022689	QC - Blank	PAH	Pyrene	mg/kg	<0.1
7022689	QC - Blank	PAH	Total PAH	mg/kg	<0.1
7022689	QC - Blank	PAH	BaP TEQ (zero)	mg/kg	<0.1
7022689	QC - Blank	PAH	BaP TEQ (half LOR)	mg/kg	0.1
7022689	QC - Blank	PAH	BaP TEQ (LOR)	mg/kg	0.2
7025116	QC - Blank	PAH	Acenaphthene	mg/kg	<0.1
7025116	QC - Blank	PAH	Acenaphthylene	mg/kg	<0.1
7025116	QC - Blank	PAH	Anthracene	mg/kg	<0.1
7025116	QC - Blank	PAH	Benz(a)anthracene	mg/kg	<0.1
7025116	QC - Blank	PAH	Benzo(a)pyrene	mg/kg	<0.1
7025116	QC - Blank	PAH	Benzo(b)fluoranthene	mg/kg	<0.1
7025116	QC - Blank	PAH	Benzo(g,h,i)perylene	mg/kg	<0.1
7025116	QC - Blank	PAH	Benzo(k)fluoranthene	mg/kg	<0.1
7025116	QC - Blank	PAH	Chrysene	mg/kg	<0.1
7025116	QC - Blank	PAH	Dibenz(a,h)anthracene	mg/kg	<0.1
7025116	QC - Blank	PAH	Fluoranthene	mg/kg	<0.1
7025116	QC - Blank	PAH	Fluorene	mg/kg	<0.1
7025116	QC - Blank	PAH	Indeno(1,2,3-cd)pyrene	mg/kg	<0.1
7025116	QC - Blank	PAH	Naphthalene	mg/kg	<0.1
7025116	QC - Blank	PAH	Phenanthrene	mg/kg	<0.1
7025116	QC - Blank	PAH	Pyrene	mg/kg	<0.1
7025116	QC - Blank	PAH	Total PAH	mg/kg	<0.1
7025116	QC - Blank	PAH	BaP TEQ (zero)	mg/kg	<0.1
7025116	QC - Blank	PAH	BaP TEQ (half LOR)	mg/kg	0.1
7025116	QC - Blank	PAH	BaP TEQ (LOR)	mg/kg	0.2
Lab Sample ID	Client Sample ID	Analysis	Analyte		
7022686	QC - Blank	OCP	BHC (alpha isomer)	mg/kg	<0.05
7022686	QC - Blank	OCP	a-Endosulphan	mg/kg	<0.05
7022686	QC - Blank	OCP	Aldrin	mg/kg	<0.05
7022686	QC - Blank	OCP	BHC (beta isomer)	mg/kg	<0.05
7022686	QC - Blank	OCP	b-Endosulphan	mg/kg	<0.05
7022686	QC - Blank	OCP	Chlordane	mg/kg	<0.05
7022686	QC - Blank	OCP	cis-Chlordane	mg/kg	<0.05

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated. Fater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 rage.
 rage 1/ or 32

 Batch No:
 21-26926

Report Number: 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

					Value
7022686	QC - Blank	OCP	trans-Chlordane	mg/kg	<0.05
7022686	QC - Blank	OCP	BHC (delta isomer)	BHC (delta isomer) mg/kg	
7022686	QC - Blank	OCP	DDD	mg/kg	<0.05
7022686	QC - Blank	OCP	DDE	mg/kg	<0.05
7022686	QC - Blank	OCP	DDT	mg/kg	<0.05
7022686	QC - Blank	OCP	Dieldrin	mg/kg	<0.05
7022686	QC - Blank	OCP	Sum of alpha-, beta- and Endosulphan	mg/kg	<0.05
7022686	QC - Blank	OCP	Endosulfan Sulfate	mg/kg	<0.05
7022686	QC - Blank	OCP	Endrin	mg/kg	<0.05
7022686	QC - Blank	OCP	Endrin Aldehyde	mg/kg	<0.05
7022686	QC - Blank	OCP	Endrin Ketone	mg/kg	<0.05
7022686	QC - Blank	OCP	Hexachlorobenzene	mg/kg	<0.05
7022686	QC - Blank	OCP	Heptachlor Epoxide	mg/kg	<0.05
7022686	QC - Blank	OCP	Heptachlor	mg/kg	<0.05
7022686	QC - Blank	OCP	BHC (gamma isomer) [Lindane]	mg/kg	<0.05
7022686	QC - Blank	OCP	Methoxychlor	mg/kg	<0.05
7022686	QC - Blank	OCP	Oxychlordane	mg/kg	<0.05
7022686	QC - Blank	OCP	Sum of DDD, DDE and DDT	mg/kg	<0.05
7022686	QC - Blank	OCP	Sum of Aldrin and Dieldrin	mg/kg	<0.05
Lab Sample ID	Client Sample ID	Analysis	Analyte		
7022692	QC - Blank	PCB	Aroclor 1016	mg/kg	<0.1
7022692	QC - Blank	PCB	Aroclor 1221	mg/kg	<0.1
7022692	QC - Blank	PCB	Aroclor 1232	mg/kg	<0.1
7022692	QC - Blank	PCB	Aroclor 1242	mg/kg	<0.1
7022692	QC - Blank	PCB	Aroclor 1248	mg/kg	<0.1
7022692	QC - Blank	PCB	Aroclor 1254	mg/kg	<0.1
7022692	QC - Blank	PCB	Aroclor 1260	mg/kg	<0.1
7022692	QC - Blank	PCB	Total PCBs	mg/kg	<0.1
Lab Sample ID	Client Sample ID	Analysis	Analyte		
7022672	QC - Blank	CHC	1,2,3,4-Tetrachlorobenzene	mg/kg	<0.1
7022672	QC - Blank	CHC	1,2,3,5-Tetrachlorbenzene	mg/kg	<0.1
7022672	QC - Blank	CHC	1,2,3-Trichlorobenzene	mg/kg	<0.1
7022672	QC - Blank	CHC	1,2,4,5-Tetrachlorobenzene mg/kg		<0.1
7022672	QC - Blank	CHC	1,2,4-Trichlorobenzene	mg/kg	<0.1

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.
(ater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 rage.
 rage 18 or 32

 Batch No:
 21-26926

 Report Number:
 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

					Value
7022672	QC - Blank	CHC	1,2-Dichlorobenzene	mg/kg	<0.1
7022672	QC - Blank	CHC	1,3,5-Trichlorobenzene	mg/kg	<0.1
7022672	QC - Blank	CHC	1,3-Dichlorobenzene	mg/kg	<0.1
7022672	QC - Blank	CHC	1,4-Dichlorobenzene	mg/kg	<0.1
7022672	QC - Blank	CHC	2-Chloronaphthalene	mg/kg	<0.1
7022672	QC - Blank	CHC	Benzal Chloride	mg/kg	<0.1
7022672	QC - Blank	CHC	Benzotrichloride	mg/kg	<0.1
7022672	QC - Blank	CHC	Benzylchloride	mg/kg	<0.1
7022672	QC - Blank	CHC	Hexachloroethane	mg/kg	<0.1
7022672	QC - Blank	CHC	Hexachlorobutadiene	mg/kg	<0.1
7022672	QC - Blank	CHC	Hexachlorocyclopentadiene	mg/kg	<0.1
7022672	QC - Blank	CHC	Pentachlorobenzene	mg/kg	<0.1
Lab Sample ID	Client Sample ID	Analysis	Analyte		
7022676	QC - Blank	Phenols(Halo)	4-Chloro-3-Methylphenol	mg/kg	<0.5
7022676	QC - Blank	Phenols(Halo)	2-Chlorophenol	mg/kg	<0.5
7022676	QC - Blank	Phenols(Halo)	2,4-Dichlorophenol	mg/kg	<0.5
7022676	QC - Blank	Phenols(Halo)	2,6-Dichlorophenol	mg/kg	<0.5
7022676	QC - Blank	Phenols(Halo)	Pentachlorophenol	mg/kg	<0.5
7022676	QC - Blank	Phenols(Halo)	2,3,4,5-Tetrachlorophenol	mg/kg	<0.5
7022676	QC - Blank	Phenols(Halo)	2,3,4,6-Tetrachlorophenol	mg/kg	<0.5
7022676	QC - Blank	Phenols(Halo)	2,3,5,6-Tetrachlorophenol	mg/kg	<0.5
7022676	QC - Blank	Phenols(Halo)	2,4,5-Trichlorophenol	mg/kg	<0.5
7022676	QC - Blank	Phenols(Halo)	2,4,6-Trichlorophenol	mg/kg	<0.5
7022676	QC - Blank	Phenols(Halo)	Total Phenols (Halogenated)	mg/kg	<0.5
Lab Sample ID	Client Sample ID	Analysis	Analyte		
7022674	QC - Blank	Phenols(NonHalo)	Phenol	mg/kg	<0.5
7022674	QC - Blank	Phenols(NonHalo)	Total Cresols	mg/kg	<1
7022674	QC - Blank	Phenols(NonHalo)	2,4-Dimethylphenol	mg/kg	<0.5
7022674	QC - Blank	Phenols(NonHalo)	2,4-Dinitrophenol	mg/kg	<30
7022674	QC - Blank	Phenols(NonHalo)	2-Methyl-4,6-Dinitrophenol	mg/kg	<10
7022674	QC - Blank	Phenols(NonHalo)	2-Nitrophenol	mg/kg	<0.5
7022674	QC - Blank	Phenols(NonHalo)	4-Nitrophenol	mg/kg	<0.5
7022674	QC - Blank	Phenols(NonHalo)	2-Cyclohexyl-4,6-Dinitrophenol	mg/kg	<30
7022674	QC - Blank	Phenols(NonHalo)	Dinoseb	mg/kg	<10

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated. Fater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 rage.
 rage 19 of 32

 Batch No:
 21-26926

Report Number: 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

					Value
7022674	QC - Blank	Phenols(NonHalo)	Total Phenols (non Halogenated)	mg/kg	<30
Lab Sample ID	Client Sample ID	Analysis	Analyte		
7024587	QC - Blank	HVOL	1,1,1,2-Tetrachloroethane	mg/kg	<0.5
7024587	QC - Blank	HVOL	1,1,2,2-Tetrachloroethane	mg/kg	<0.5
7024587	QC - Blank	HVOL	1,1- Dichloroethane	mg/kg	<0.5
7024587	QC - Blank	HVOL	1,1-Dichloroethene	mg/kg	<0.5
7024587	QC - Blank	HVOL	1,1-Dichloropropene	mg/kg	<0.5
7024587	QC - Blank	HVOL	1,2,3-Trichloropropane	mg/kg	<0.5
7024587	QC - Blank	HVOL	1,2-Dibromo-3-Chloropropane	mg/kg	<0.5
7024587	QC - Blank	HVOL	1,2-Dichloroethene [cis]	mg/kg	<0.5
7024587	QC - Blank	HVOL	1,2-Dichloroethene [trans]	mg/kg	<0.5
7024587	QC - Blank	HVOL	1,2-Dichloroethane	mg/kg	<0.5
7024587	QC - Blank	HVOL	1,2-Dichloropropane	mg/kg	<0.5
7024587	QC - Blank	HVOL	1,3-Dichloropropane	mg/kg	<0.5
7024587	QC - Blank	HVOL	1,3-Dichloropropene [cis]	mg/kg	<0.5
7024587	QC - Blank	HVOL	1,3-Dichloropropene [trans]	mg/kg	<0.5
7024587	QC - Blank	HVOL	2,2-Dichloropropane	mg/kg	<0.5
7024587	QC - Blank	HVOL	2-Chlorotoluene	mg/kg	<0.5
7024587	QC - Blank	HVOL	4-Chlorotoluene	mg/kg	<0.5
7024587	QC - Blank	HVOL	Bromochloromethane	mg/kg	<0.5
7024587	QC - Blank	HVOL	Bromodichloromethane	mg/kg	<0.5
7024587	QC - Blank	HVOL	Bromobenzene	mg/kg	<0.5
7024587	QC - Blank	HVOL	Bromoform (Tribromomethane)	mg/kg	<0.5
7024587	QC - Blank	HVOL	Carbon Tetrachloride	mg/kg	<0.5
7024587	QC - Blank	HVOL	Chloroform (Trichloromethane)	mg/kg	<0.5
7024587	QC - Blank	HVOL	Chlorobenzene	mg/kg	<0.5
7024587	QC - Blank	HVOL	Dibromochloromethane	mg/kg	<0.5
7024587	QC - Blank	HVOL	Dibromomethane	mg/kg	<0.5
7024587	QC - Blank	HVOL	1,2-Dibromoethane	mg/kg	<0.5
7024587	QC - Blank	HVOL	Dichloromethane	mg/kg	<1
7024587	QC - Blank	HVOL	Trichlorofluoromethane (CFC11)	mg/kg	<2
7024587	QC - Blank	HVOL	Tetrachloroethene	mg/kg	<0.5
7024587	QC - Blank	HVOL	Vinyl Chloride (Monomer)	mg/kg	<1
7024587	QC - Blank	HVOL	1,1,1-Trichloroethane	mg/kg	<0.5

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated. Vater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 Page
 Page zu or 32

 Batch No:
 21-26926

 Report Number:
 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

QUALITY CONTROL - DUPLICATES

QC Data for duplicates is calculated on raw 'unrounded' values. Laboratory duplicates are randomly selected samples tested by the laboratory to maintain method precision and provide information on sample homogeniety.

RPD = Relative Percentage Difference for duplicate determinations. RPD's that fall outside the general acceptance criteria will be attributed to non-homogeneity of samples or results of low magnitudes.

					Sample Value	Duplicate Value	% RPD
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7023276	NCP	Moisture	Moisture %	% w/wet w	5	6	4.1
7024895	NCP	pH	pH, units	Units	9.3	9.3	0.8
7024921	NCP	Total Fluoride	Total Fluoride, as F	mg/kg	310	300	3.2
7025056	NCP	Cyanide	Cyanide, as CN	mg/kg	<5	<5	0
7025625	NCP	Total Cr 6+ DA	Hexavalent Chromium (Total) Soil DA	mg/kg	<1	<1	0
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7022798	NCP	MS Total Metals	Arsenic	mg/kg	<5	<5	0
7022798	NCP	MS Total Metals	Cadmium	mg/kg	<0.2	<0.2	0
7022798	NCP	MS Total Metals	Copper	mg/kg	<5	<5	0
7022798	NCP	MS Total Metals	Lead	mg/kg	23	23	2.2
7022798	NCP	MS Total Metals	Mercury	mg/kg	0.05	0.06	18.8
7022798	NCP	MS Total Metals	Molybdenum	mg/kg	<5	<5	0
7022798	NCP	MS Total Metals	Nickel	mg/kg	<5	<5	0
7022798	NCP	MS Total Metals	Selenium	mg/kg	<3	<3	0
7022798	NCP	MS Total Metals	Silver	mg/kg	<5	<5	0
7022798	NCP	MS Total Metals	Tin	mg/kg	<5	<5	0
7022798	NCP	MS Total Metals	Zinc	mg/kg	27	26	3.3
7025457	NCP	MS Total Metals	Aluminium	mg/kg	7900	9100	13.9
7025457	NCP	MS Total Metals	Antimony	mg/kg	<5	<5	0
7025457	NCP	MS Total Metals	Arsenic	mg/kg	<5	<5	0
7025457	NCP	MS Total Metals	Barium	mg/kg	53	44	17.8
7025457	NCP	MS Total Metals	Beryllium	mg/kg	<5	<5	0
7025457	NCP	MS Total Metals	Boron	mg/kg	<10	<10	0

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

alculated results are based on raw data

 Page.
 Page 21 or 32

 Batch No:
 21-26926

Report Number: 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

					Sample Value	Duplicate Value	% RPD
7025457	NCP	MS Total Metals	Cadmium	mg/kg	<0.2	<0.2	0
7025457	NCP	MS Total Metals	Chromium	mg/kg	14	17	23.7
7025457	NCP	MS Total Metals	Cobalt	mg/kg	<5	<5	0
7025457	NCP	MS Total Metals	Copper	mg/kg	<5	<5	0
7025457	NCP	MS Total Metals	Iron	mg/kg	8100	9000	11.4
7025457	NCP	MS Total Metals	Lanthanum	mg/kg	15	15	3.7
7025457	NCP	MS Total Metals	Lead	mg/kg	9	7	20.1
7025457	NCP	MS Total Metals	Mercury	mg/kg	<0.05	<0.05	0
7025457	NCP	MS Total Metals	Molybdenum	mg/kg	<5	<5	0
7025457	NCP	MS Total Metals	Nickel	mg/kg	7	8	10.0
7025457	NCP	MS Total Metals	Selenium	mg/kg	<3	<3	0
7025457	NCP	MS Total Metals	Silver	mg/kg	<5	<5	0
7025457	NCP	MS Total Metals	Tin	mg/kg	<5	<5	0
7025457	NCP	MS Total Metals	Vanadium	mg/kg	18	21	15.3
7025457	NCP	MS Total Metals	Zinc	mg/kg	12	11	7.5
7027194	NCP	MS Total Metals	Aluminium	mg/kg	11000	13000	12.6
7027194	NCP	MS Total Metals	Antimony	mg/kg	<5	<5	0
7027194	NCP	MS Total Metals	Barium	mg/kg	73	70	4.2
7027194	NCP	MS Total Metals	Beryllium	mg/kg	<5	<5	0
7027194	NCP	MS Total Metals	Boron	mg/kg	<10	<10	0
7027194	NCP	MS Total Metals	Copper	mg/kg	11	14	24.3
7027194	NCP	MS Total Metals	Iron	mg/kg	18000	21000	18.4
7027194	NCP	MS Total Metals	Lanthanum	mg/kg	24	23	3.9
7027194	NCP	MS Total Metals	Manganese	mg/kg	200	250	21.5
7027194	NCP	MS Total Metals	Mercury	mg/kg	<0.05	<0.05	0
7027194	NCP	MS Total Metals	Molybdenum	mg/kg	<5	<5	0
7027194	NCP	MS Total Metals	Selenium	mg/kg	<3	<3	0
7027194	NCP	MS Total Metals	Silver	mg/kg	<5	<5	0
7027194	NCP	MS Total Metals	Tin	mg/kg	<5	<5	0
7027194	NCP	MS Total Metals	Vanadium	mg/kg	31	34	8.4
7027194	NCP	MS Total Metals	Zinc	mg/kg	58	64	8.5
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7024589	NCP	MAH	Styrene	mg/kg	<0.5	<0.5	0
7024589	NCP	MAH	Cumene	mg/kg	<0.5	<0.5	0

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.
(ater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 rage.
 rage zz or sz

 Batch No:
 21-26926

Report Number: 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

					Sample Value	Duplicate Value	% RPD
7024589	NCP	MAH	1,2,4-Trimethylbenzene	mg/kg	<0.5	<0.5	0
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7023512	BH01/0.0-0.1	BTEXN	Benzene	mg/kg	<0.5	<0.5	0
7023512	BH01/0.0-0.1	BTEXN	Toluene	mg/kg	<0.5	<0.5	0
7023512	BH01/0.0-0.1	BTEXN	Ethyl Benzene	mg/kg	<0.5	<0.5	0
7023512	BH01/0.0-0.1	BTEXN	Xylene - m&p	mg/kg	<1	<1	0
7023512	BH01/0.0-0.1	BTEXN	Xylene - O	mg/kg	<0.5	<0.5	0
7023512	BH01/0.0-0.1	BTEXN	Total Xylenes	mg/kg	<1	<1	0
7023512	BH01/0.0-0.1	BTEXN	BTEX (Sum)	mg/kg	<1	<1	0
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7023525	BH01/0.0-0.1	TRH (C6-C10) & F1	TPHC6-C9	mg/kg	<20	<20	0
7023525	BH01/0.0-0.1	TRH (C6-C10) & F1	TRHC6-C10	mg/kg	<20	<20	0
7023525	BH01/0.0-0.1	TRH (C6-C10) & F1	TRHC6-C10 minus BTEX	mg/kg	<20	<20	0
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7023539	NCP	TRH & TPH (>C10)	TPH C10-C14	mg/kg	<20	<20	0
7023539	NCP	TRH & TPH (>C10)	TPH C15-C28	mg/kg	<50	<50	0
7023539	NCP	TRH & TPH (>C10)	TPH C29-C36	mg/kg	<50	<50	0
7023539	NCP	TRH & TPH (>C10)	Sum of TPH C10-C36	mg/kg	<50	<50	0
7023539	NCP	TRH & TPH (>C10)	TRH>C10-C16	mg/kg	<20	<20	0
7023539	NCP	TRH & TPH (>C10)	TRH>C16-C34	mg/kg	<50	<50	0
7023539	NCP	TRH & TPH (>C10)	TRH>C34-C40	mg/kg	<50	<50	0
7023539	NCP	TRH & TPH (>C10)	Sum of TRH>C10-C40	mg/kg	<50	<50	0
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7022678	NCP	PAH	Acenaphthene	mg/kg	<0.1	<0.1	0
7022678	NCP	PAH	Acenaphthylene	mg/kg	<0.1	<0.1	0
7022678	NCP	PAH	Anthracene	mg/kg	<0.1	<0.1	0
7022678	NCP	PAH	Benz(a)anthracene	mg/kg	0.2	0.2	11.4
7022678	NCP	PAH	Benzo(a)pyrene	mg/kg	0.2	0.2	9.3
7022678	NCP	PAH	Benzo(b)fluoranthene	mg/kg	0.2	0.2	9.5
7022678	NCP	PAH	Benzo(g,h,i)perylene	mg/kg	0.2	0.2	10.2
7022678	NCP	PAH	Benzo(k)fluoranthene	mg/kg	0.2	0.2	11.2
7022678	NCP	PAH	Chrysene	mg/kg	0.2	0.2	11.8
7022678	NCP	PAH	Dibenz(a,h)anthracene	mg/kg	<0.1	<0.1	0
7022678	NCP	PAH	Fluoranthene	mg/kg	0.3	0.2	16.5

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated. Fater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

alculated regults are based on raw data

 Page
 Page 23 or 32

 Batch No:
 21-26926

 Report Number:
 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

					Sample Value	Duplicate Value	% RPD
7022678	NCP	PAH	Fluorene	mg/kg	<0.1	<0.1	0
7022678	NCP	PAH	Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.1	13.6
7022678	NCP	PAH	Naphthalene	mg/kg	<0.1	<0.1	0
7022678	NCP	PAH	Phenanthrene	mg/kg	<0.1	<0.1	0
7022678	NCP	PAH	Pyrene	mg/kg	0.3	0.3	6.8
7022678	NCP	PAH	Total PAH	mg/kg	1.9	1.8	5.4
7022678	NCP	PAH	BaP TEQ (zero)	mg/kg	0.3	0.3	0.0
7022678	NCP	PAH	BaP TEQ (half LOR)	mg/kg	0.3	0.3	0.0
7022678	NCP	PAH	BaP TEQ (LOR)	mg/kg	0.4	0.4	0.0
7022687	NCP	PAH	Acenaphthene	mg/kg	<0.1	<0.1	0
7022687	NCP	PAH	Acenaphthylene	mg/kg	<0.1	<0.1	0
7022687	NCP	PAH	Anthracene	mg/kg	<0.1	<0.1	0
7022687	NCP	PAH	Benz(a)anthracene	mg/kg	0.3	0.2	33.7
7022687	NCP	PAH	Benzo(a)pyrene	mg/kg	0.3	0.3	13.3
7022687	NCP	PAH	Benzo(b)fluoranthene	mg/kg	0.3	0.2	12.4
7022687	NCP	PAH	Benzo(g,h,i)perylene	mg/kg	0.2	0.2	17.3
7022687	NCP	PAH	Benzo(k)fluoranthene	mg/kg	0.2	0.2	13.0
7022687	NCP	PAH	Chrysene	mg/kg	0.2	0.2	20.4
7022687	NCP	PAH	Dibenz(a,h)anthracene	mg/kg	<0.1	<0.1	0
7022687	NCP	PAH	Fluoranthene	mg/kg	0.6	0.3	51.1
7022687	NCP	PAH	Fluorene	mg/kg	<0.1	<0.1	0
7022687	NCP	PAH	Indeno(1,2,3-cd)pyrene	mg/kg	0.2	0.2	18.4
7022687	NCP	PAH	Naphthalene	mg/kg	<0.1	<0.1	0
7022687	NCP	PAH	Phenanthrene	mg/kg	0.2	<0.1	NA
7022687	NCP	PAH	Pyrene	mg/kg	0.5	0.4	40.5
7022687	NCP	PAH	Total PAH	mg/kg	3.0	2.2	30.8
7022687	NCP	PAH	BaP TEQ (zero)	mg/kg	0.4	0.4	5.1
7022687	NCP	PAH	BaP TEQ (half LOR)	mg/kg	0.5	0.4	4.5
7022687	NCP	PAH	BaP TEQ (LOR)	mg/kg	0.5	0.5	4.0
7025114	NCP	PAH	Acenaphthene	mg/kg	<0.1	<0.1	0
7025114	NCP	PAH	Acenaphthylene	mg/kg	<0.1	<0.1	0
7025114	NCP	PAH	Anthracene	mg/kg	<0.1	<0.1	0
7025114	NCP	PAH	Benz(a)anthracene	mg/kg	<0.1	<0.1	0
7025114	NCP	PAH	Benzo(a)pyrene	mg/kg	<0.1	<0.1	0

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated. Fater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

alculated regults are based on raw data

 Fage.
 Page 24 or 32

 Batch No:
 21-26926

Report Number: 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

					Sample Value	Duplicate Value	% RPD
7025114	NCP	PAH	Benzo(b)fluoranthene	mg/kg	<0.1	<0.1	0
7025114	NCP	PAH	Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	0
7025114	NCP	PAH	Benzo(k)fluoranthene	mg/kg	<0.1	<0.1	0
7025114	NCP	PAH	Chrysene	mg/kg	<0.1	<0.1	0
7025114	NCP	PAH	Dibenz(a,h)anthracene	mg/kg	<0.1	<0.1	0
7025114	NCP	PAH	Fluoranthene	mg/kg	0.2	<0.1	NA
7025114	NCP	PAH	Fluorene	mg/kg	<0.1	<0.1	0
7025114	NCP	PAH	Indeno(1,2,3-cd)pyrene	mg/kg	<0.1	<0.1	0
7025114	NCP	PAH	Naphthalene	mg/kg	<0.1	<0.1	0
7025114	NCP	PAH	Phenanthrene	mg/kg	0.1	<0.1	NA
7025114	NCP	PAH	Pyrene	mg/kg	0.2	<0.1	NA
7025114	NCP	PAH	Total PAH	mg/kg	0.5	<0.1	NA
7025114	NCP	PAH	BaP TEQ (zero)	mg/kg	<0.1	<0.1	0
7025114	NCP	PAH	BaP TEQ (half LOR)	mg/kg	0.1	0.1	0.0
7025114	NCP	PAH	BaP TEQ (LOR)	mg/kg	0.2	0.2	0.0
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7022682	NCP	OCP	BHC (alpha isomer)	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	a-Endosulphan	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	Aldrin	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	BHC (beta isomer)	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	b-Endosulphan	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	Chlordane	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	cis-Chlordane	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	trans-Chlordane	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	BHC (delta isomer)	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	DDD	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	DDE	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	DDT	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	Dieldrin	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	Sum of alpha-, beta- and Endosulphan	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	Endosulfan Sulfate	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	Endrin	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	Endrin Aldehyde	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	Endrin Ketone	mg/kg	<0.05	<0.05	0

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated. Fater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 Page.
 Page 25 of 32

 Batch No:
 21-26926

Report Number: 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

					Sample Value	Duplicate Value	% RPD
7022682	NCP	OCP	Hexachlorobenzene	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	Heptachlor Epoxide	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	Heptachlor	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	BHC (gamma isomer) [Lindane]	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	Methoxychlor	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	Oxychlordane	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	Sum of DDD, DDE and DDT	mg/kg	<0.05	<0.05	0
7022682	NCP	OCP	Sum of Aldrin and Dieldrin	mg/kg	<0.05	<0.05	0
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7022690	NCP	PCB	Aroclor 1016	mg/kg	<0.1	<0.1	0
7022690	NCP	PCB	Aroclor 1221	mg/kg	<0.1	<0.1	0
7022690	NCP	PCB	Aroclor 1232	mg/kg	<0.1	<0.1	0
7022690	NCP	PCB	Aroclor 1242	mg/kg	<0.1	<0.1	0
7022690	NCP	PCB	Aroclor 1248	mg/kg	<0.1	<0.1	0
7022690	NCP	PCB	Aroclor 1254	mg/kg	<0.1	<0.1	0
7022690	NCP	PCB	Aroclor 1260	mg/kg	<0.1	<0.1	0
7022690	NCP	PCB	Total PCBs	mg/kg	<0.1	<0.1	0
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7022671	NCP	CHC	1,2,3,4-Tetrachlorobenzene	mg/kg	<0.1	<0.1	0
7022671	NCP	CHC	1,2,3,5-Tetrachlorbenzene	mg/kg	<0.1	<0.1	0
7022671	NCP	CHC	1,2,3-Trichlorobenzene	mg/kg	<0.1	<0.1	0
7022671	NCP	CHC	1,2,4,5-Tetrachlorobenzene	mg/kg	<0.1	<0.1	0
7022671	NCP	CHC	1,2,4-Trichlorobenzene	mg/kg	<0.1	<0.1	0
7022671	NCP	CHC	1,2-Dichlorobenzene	mg/kg	<0.1	<0.1	0
7022671	NCP	CHC	1,3,5-Trichlorobenzene	mg/kg	<0.1	<0.1	0
7022671	NCP	CHC	1,3-Dichlorobenzene	mg/kg	<0.1	<0.1	0
7022671	NCP	CHC	1,4-Dichlorobenzene	mg/kg	<0.1	<0.1	0
7022671	NCP	CHC	2-Chloronaphthalene	mg/kg	<0.1	<0.1	0
7022671	NCP	CHC	Benzal Chloride	mg/kg	<0.1	<0.1	0
7022671	NCP	CHC	Benzotrichloride	mg/kg	<0.1	<0.1	0
7022671	NCP	CHC	Benzylchloride	mg/kg	<0.1	<0.1	0
7022671	NCP	CHC	Hexachloroethane	mg/kg	<0.1	<0.1	0
7022671	NCP	CHC	Hexachlorobutadiene	mg/kg	<0.1	<0.1	0
7022671	NCP	CHC	Hexachlorocyclopentadiene	mg/kg	<0.1	<0.1	0

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.
(ater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

alculated regults are based on raw data

Page. Page 26 of 32
Batch No: 21-26926

Report Number: 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

					Sample Value	Duplicate Value	% RPD
7022671	NCP	CHC	Pentachlorobenzene	mg/kg	<0.1	<0.1	0
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7022675	NCP	Phenols(Halo)	4-Chloro-3-Methylphenol	mg/kg	<0.5	<0.5	0
7022675	NCP	Phenols(Halo)	2-Chlorophenol	mg/kg	<0.5	<0.5	0
7022675	NCP	Phenols(Halo)	2,4-Dichlorophenol	mg/kg	<0.5	<0.5	0
7022675	NCP	Phenols(Halo)	2,6-Dichlorophenol	mg/kg	<0.5	<0.5	0
7022675	NCP	Phenols(Halo)	Pentachlorophenol	mg/kg	<0.5	<0.5	0
7022675	NCP	Phenols(Halo)	2,3,4,5-Tetrachlorophenol	mg/kg	<0.5	<0.5	0
7022675	NCP	Phenols(Halo)	2,3,4,6-Tetrachlorophenol	mg/kg	<0.5	<0.5	0
7022675	NCP	Phenols(Halo)	2,3,5,6-Tetrachlorophenol	mg/kg	<0.5	<0.5	0
7022675	NCP	Phenols(Halo)	2,4,5-Trichlorophenol	mg/kg	<0.5	<0.5	0
7022675	NCP	Phenols(Halo)	2,4,6-Trichlorophenol	mg/kg	<0.5	<0.5	0
7022675	NCP	Phenols(Halo)	Total Phenols (Halogenated)	mg/kg	<0.5	<0.5	0
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7022673	NCP	Phenols(NonHalo)	Phenol	mg/kg	<0.5	<0.5	0
7022673	NCP	Phenols(NonHalo)	Total Cresols	mg/kg	<1	<1	0
7022673	NCP	Phenols(NonHalo)	2,4-Dimethylphenol	mg/kg	<0.5	<0.5	0
7022673	NCP	Phenols(NonHalo)	2,4-Dinitrophenol	mg/kg	<30	<30	0
7022673	NCP	Phenols(NonHalo)	2-Methyl-4,6-Dinitrophenol	mg/kg	<10	<10	0
7022673	NCP	Phenols(NonHalo)	2-Nitrophenol	mg/kg	<0.5	<0.5	0
7022673	NCP	Phenols(NonHalo)	4-Nitrophenol	mg/kg	<0.5	<0.5	0
7022673	NCP	Phenols(NonHalo)	2-Cyclohexyl-4,6-Dinitrophenol	mg/kg	<30	<30	0
7022673	NCP	Phenols(NonHalo)	Dinoseb	mg/kg	<10	<10	0
7022673	NCP	Phenols(NonHalo)	Total Phenols (non Halogenated)	mg/kg	<30	<30	0
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7024584	NCP	HVOL	1,1,1,2-Tetrachloroethane	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	1,1,2,2-Tetrachloroethane	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	1,1- Dichloroethane	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	1,1-Dichloroethene	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	1,1-Dichloropropene	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	1,2,3-Trichloropropane	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	1,2-Dibromo-3-Chloropropane	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	1,2-Dichloroethene [cis]	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	1,2-Dichloroethene [trans]	mg/kg	<0.5	<0.5	0

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.
/ater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 Page
 Page 27 of 32

 Batch No:
 21-26926

Report Number: 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

					Sample Value	Duplicate Value	% RPD
7024584	NCP	HVOL	1,2-Dichloroethane	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	1,2-Dichloropropane	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	1,3-Dichloropropane	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	1,3-Dichloropropene [cis]	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	1,3-Dichloropropene [trans]	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	2,2-Dichloropropane	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	2-Chlorotoluene	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	4-Chlorotoluene	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	Bromochloromethane	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	Bromodichloromethane	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	Bromobenzene	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	Bromoform (Tribromomethane)	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	Carbon Tetrachloride	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	Chloroform (Trichloromethane)	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	Chlorobenzene	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	Dibromochloromethane	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	Dibromomethane	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	1,2-Dibromoethane	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	Dichloromethane	mg/kg	<1	<1	0
7024584	NCP	HVOL	Trichlorofluoromethane (CFC11)	mg/kg	<2	<2	0
7024584	NCP	HVOL	Tetrachloroethene	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	Vinyl Chloride (Monomer)	mg/kg	<1	<1	0
7024584	NCP	HVOL	1,1,1-Trichloroethane	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	1,1,2-Trichloroethane	mg/kg	<0.5	<0.5	0
7024584	NCP	HVOL	Trichloroethene	mg/kg	<0.5	<0.5	0

QUALITY CONTROL - SPIKES

QC Data for spikes is calculated on raw 'unrounded' values. Laboratory spikes are randomly selected samples in which the analytes in question have been artificially introduced and recovered via standard analysis and are used to provide information on potential matrix effects on analyte recoveries.

Spike recoveries that fall outside the general acceptance criteria will be attributed to sample matrix interference or results of high magnitudes.

NCP: Non-Customer Parent (sample quality is representative of the analytical batch but the sample that was QC tested belongs to a customer not pertaining to the report.)

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

alculated recults are hased on raw data

 rage.
 rage 28 or 32

 Batch No:
 21-26926

 Report Number:
 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

					Sample Value	Expected Value	% Recovery
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7024920	NCP	Total Fluoride	Total Fluoride, as F	mg/kg	310	700	82.3
7025053	NCP	Cyanide	Cyanide, as CN	mg/kg	<5	20	115
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7022799	NCP	MS Total Metals	Cadmium	mg/kg	<0.2	100	96.9
7022799	NCP	MS Total Metals	Copper	mg/kg	<5	100	97.1
7022799	NCP	MS Total Metals	Lead	mg/kg	23	120	101
7022799	NCP	MS Total Metals	Mercury	mg/kg	0.05	1.0	104
7022799	NCP	MS Total Metals	Molybdenum	mg/kg	<5	100	95.8
7022799	NCP	MS Total Metals	Nickel	mg/kg	<5	100	101
7022799	NCP	MS Total Metals	Selenium	mg/kg	<3	100	85.3
7022799	NCP	MS Total Metals	Zinc	mg/kg	27	130	97.8
7025458	NCP	MS Total Metals	Antimony	mg/kg	<5	100	84.5
7025458	NCP	MS Total Metals	Beryllium	mg/kg	<5	100	96.9
7025458	NCP	MS Total Metals	Boron	mg/kg	<10	100	95.8
7025458	NCP	MS Total Metals	Cadmium	mg/kg	<0.2	100	108
7025458	NCP	MS Total Metals	Chromium	mg/kg	14	110	108
7025458	NCP	MS Total Metals	Cobalt	mg/kg	<5	100	110
7025458	NCP	MS Total Metals	Copper	mg/kg	<5	100	94.6
7025458	NCP	MS Total Metals	Lanthanum	mg/kg	15	110	120
7025458	NCP	MS Total Metals	Lead	mg/kg	9	110	109
7025458	NCP	MS Total Metals	Mercury	mg/kg	<0.05	1.0	108
7025458	NCP	MS Total Metals	Molybdenum	mg/kg	<5	100	101
7025458	NCP	MS Total Metals	Nickel	mg/kg	7	110	101
7025458	NCP	MS Total Metals	Selenium	mg/kg	<3	100	85.2
7025458	NCP	MS Total Metals	Zinc	mg/kg	12	110	95.4
7027195	NCP	MS Total Metals	Beryllium	mg/kg	<5	100	89.5
7027195	NCP	MS Total Metals	Boron	mg/kg	<10	100	87.4
7027195	NCP	MS Total Metals	Cadmium	mg/kg	<0.2	100	103
7027195	NCP	MS Total Metals	Cobalt	mg/kg	8	110	91.3
7027195	NCP	MS Total Metals	Copper	mg/kg	11	110	98.6
7027195	NCP	MS Total Metals	Lanthanum	mg/kg	24	120	100
7027195	NCP	MS Total Metals	Mercury	mg/kg	<0.05	1.0	96.6
7027195	NCP	MS Total Metals	Molybdenum	mg/kg	<5	100	90.1

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.
/ater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 Page.
 Page 29 of 32

 Batch No:
 21-26926

Report Number: 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

					Sample Value	Expected Value	% Recovery
7027195	NCP	MS Total Metals	Nickel	mg/kg	19	120	92.2
7027195	NCP	MS Total Metals	Silver	mg/kg	<5	1.1	84.7
7027195	NCP	MS Total Metals	Zinc	mg/kg	58	150	83.7
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7024590	NCP	MAH	Styrene	mg/kg	<0.5	5.1	74.7
7024590	NCP	MAH	Cumene	mg/kg	<0.5	5.1	78.0
7024590	NCP	MAH	1,2,4-Trimethylbenzene	mg/kg	<0.5	5.1	70.7
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7023515	NCP	BTEXN	Benzene	mg/kg	<0.5	5.1	82.0
7023515	NCP	BTEXN	Toluene	mg/kg	<0.5	5.1	84.9
7023515	NCP	BTEXN	Ethyl Benzene	mg/kg	<0.5	5.1	80.4
7023515	NCP	BTEXN	Xylene - m&p	mg/kg	<1	10	83.6
7023515	NCP	BTEXN	Xylene - O	mg/kg	<0.5	5.1	82.5
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7023526	BH04/0.0-0.1	TRH (C6-C10) & F1	TPHC6-C9	mg/kg	<20	110	74.7
7023526	BH04/0.0-0.1	TRH (C6-C10) & F1	TRHC6-C10	mg/kg	<20	120	79.5
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7022679	BH05/0.0-0.1	PAH	Acenaphthene	mg/kg	<0.2	1.4	100
7022679	BH05/0.0-0.1	PAH	Acenaphthylene	mg/kg	<0.2	1.4	101
7022679	BH05/0.0-0.1	PAH	Anthracene	mg/kg	<0.2	1.4	96.0
7022679	BH05/0.0-0.1	PAH	Benz(a)anthracene	mg/kg	<0.2	1.4	117
7022679	BH05/0.0-0.1	PAH	Benzo(a)pyrene	mg/kg	<0.2	1.4	98.4
7022679	BH05/0.0-0.1	PAH	Benzo(b)fluoranthene	mg/kg	<0.2	1.4	96.8
7022679	BH05/0.0-0.1	PAH	Benzo(g,h,i)perylene	mg/kg	<0.2	1.4	100
7022679	BH05/0.0-0.1	PAH	Benzo(k)fluoranthene	mg/kg	<0.2	1.4	96.0
7022679	BH05/0.0-0.1	PAH	Chrysene	mg/kg	<0.2	1.4	101
7022679	BH05/0.0-0.1	PAH	Dibenz(a,h)anthracene	mg/kg	<0.2	1.4	94.4
7022679	BH05/0.0-0.1	PAH	Fluoranthene	mg/kg	<0.2	1.4	110
7022679	BH05/0.0-0.1	PAH	Fluorene	mg/kg	<0.2	1.4	99.2
7022679	BH05/0.0-0.1	PAH	Indeno(1,2,3-cd)pyrene	mg/kg	<0.2	1.4	94.8
7022679	BH05/0.0-0.1	PAH	Naphthalene	mg/kg	<0.2	1.4	96.0
7022679	BH05/0.0-0.1	PAH	Phenanthrene	mg/kg	<0.2	1.4	103
7022679	BH05/0.0-0.1	PAH	Pyrene	mg/kg	<0.2	1.4	109
7022688	NCP	PAH	Acenaphthene	mg/kg	<0.1	1.4	88.4

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated. Fater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 rage.
 rage su or sz

 Batch No:
 21-26926

 Report Number:
 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

					Sample Value	Expected Value	% Recovery
7022688	NCP	PAH	Acenaphthylene	mg/kg	<0.1	1.4	79.0
7022688	NCP	PAH	Anthracene	mg/kg	<0.1	1.4	79.6
7022688	NCP	PAH	Benz(a)anthracene	mg/kg	<0.1	1.4	96.8
7022688	NCP	PAH	Benzo(a)pyrene	mg/kg	<0.1	1.4	96.8
7022688	NCP	PAH	Benzo(b)fluoranthene	mg/kg	<0.1	1.4	90.4
7022688	NCP	PAH	Benzo(g,h,i)perylene	mg/kg	<0.1	1.4	81.4
7022688	NCP	PAH	Benzo(k)fluoranthene	mg/kg	<0.1	1.4	85.4
7022688	NCP	PAH	Chrysene	mg/kg	<0.1	1.4	80.8
7022688	NCP	PAH	Dibenz(a,h)anthracene	mg/kg	<0.1	1.4	86.2
7022688	NCP	PAH	Fluoranthene	mg/kg	<0.1	1.4	93.4
7022688	NCP	PAH	Fluorene	mg/kg	<0.1	1.4	78.4
7022688	NCP	PAH	Indeno(1,2,3-cd)pyrene	mg/kg	<0.1	1.4	96.2
7022688	NCP	PAH	Naphthalene	mg/kg	<0.1	1.4	74.6
7022688	NCP	PAH	Phenanthrene	mg/kg	<0.1	1.4	83.6
7022688	NCP	PAH	Pyrene	mg/kg	<0.1	1.4	94.2
7025115	NCP	PAH	Acenaphthene	mg/kg	<0.1	1.4	104
7025115	NCP	PAH	Acenaphthylene	mg/kg	<0.1	1.4	104
7025115	NCP	PAH	Anthracene	mg/kg	<0.1	1.4	101
7025115	NCP	PAH	Benz(a)anthracene	mg/kg	<0.1	1.4	103
7025115	NCP	PAH	Benzo(a)pyrene	mg/kg	<0.1	1.4	101
7025115	NCP	PAH	Benzo(b)fluoranthene	mg/kg	<0.1	1.4	101
7025115	NCP	PAH	Benzo(g,h,i)perylene	mg/kg	<0.1	1.4	102
7025115	NCP	PAH	Benzo(k)fluoranthene	mg/kg	<0.1	1.4	99.4
7025115	NCP	PAH	Chrysene	mg/kg	<0.1	1.4	108
7025115	NCP	PAH	Dibenz(a,h)anthracene	mg/kg	<0.1	1.4	102
7025115	NCP	PAH	Fluoranthene	mg/kg	<0.1	1.4	104
7025115	NCP	PAH	Fluorene	mg/kg	<0.1	1.4	109
7025115	NCP	PAH	Indeno(1,2,3-cd)pyrene	mg/kg	<0.1	1.4	125
7025115	NCP	PAH	Naphthalene	mg/kg	<0.1	1.4	101
7025115	NCP	PAH	Phenanthrene	mg/kg	<0.1	1.4	102
7025115	NCP	PAH	Pyrene	mg/kg	<0.1	1.4	103
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7022683	NCP	OCP	BHC (alpha isomer)	mg/kg	<0.05	1.4	91.6
7022683	NCP	OCP	a-Endosulphan	mg/kg	<0.05	1.4	104

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.
/ater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

alculated regults are based on raw data

 rage.
 rage 31 or 32

 Batch No:
 21-26926

Report Number: 898204

Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

					Sample Value	Expected Value	% Recovery
7022683	NCP	OCP	Aldrin	mg/kg	<0.05	1.4	125
7022683	NCP	OCP	BHC (beta isomer)	mg/kg	<0.05	1.4	91.0
7022683	NCP	OCP	b-Endosulphan	mg/kg	<0.05	1.4	110
7022683	NCP	OCP	Chlordane	mg/kg	<0.05	2.9	123
7022683	NCP	OCP	cis-Chlordane	mg/kg	<0.05	1.4	123
7022683	NCP	OCP	trans-Chlordane	mg/kg	<0.05	1.4	122
7022683	NCP	OCP	BHC (delta isomer)	mg/kg	<0.05	1.4	112
7022683	NCP	OCP	DDD	mg/kg	<0.05	1.4	119
7022683	NCP	OCP	DDE	mg/kg	<0.05	1.4	98.2
7022683	NCP	OCP	Dieldrin	mg/kg	<0.05	1.4	109
7022683	NCP	OCP	Endosulfan Sulfate	mg/kg	<0.05	1.4	95.2
7022683	NCP	OCP	Endrin	mg/kg	<0.05	1.4	110
7022683	NCP	OCP	Endrin Aldehyde	mg/kg	<0.05	1.4	98.4
7022683	NCP	OCP	Endrin Ketone	mg/kg	<0.05	1.4	97.8
7022683	NCP	OCP	Hexachlorobenzene	mg/kg	<0.05	1.4	95.4
7022683	NCP	OCP	Heptachlor Epoxide	mg/kg	<0.05	1.4	116
7022683	NCP	OCP	Heptachlor	mg/kg	<0.05	1.4	106
7022683	NCP	OCP	BHC (gamma isomer) [Lindane]	mg/kg	<0.05	1.4	92.0
7022683	NCP	OCP	Methoxychlor	mg/kg	<0.05	1.4	56.8
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7022691	NCP	PCB	Aroclor 1016	mg/kg	<0.1	2.3	101
7022691	NCP	PCB	Aroclor 1260	mg/kg	<0.1	2.7	95.4
Lab Sample ID	Client Sample ID	Analysis	Analyte				
7024585	NCP	HVOL	1,1- Dichloroethane	mg/kg	<0.5	5.1	83.0
7024585	NCP	HVOL	1,1-Dichloroethene	mg/kg	<0.5	5.1	91.1
7024585	NCP	HVOL	1,1-Dichloropropene	mg/kg	<0.5	5.1	81.6
7024585	NCP	HVOL	1,2,3-Trichloropropane	mg/kg	<0.5	5.1	81.2
7024585	NCP	HVOL	1,2-Dichloroethene [cis]	mg/kg	<0.5	5.1	85.2
7024585	NCP	HVOL	1,2-Dichloroethene [trans]	mg/kg	<0.5	5.1	84.9
7024585	NCP	HVOL	1,2-Dichloroethane	mg/kg	<0.5	5.1	85.4
7024585	NCP	HVOL	1,2-Dichloropropane	mg/kg	<0.5	5.1	77.4
7024585	NCP	HVOL	2,2-Dichloropropane	mg/kg	<0.5	5.1	74.1
7024585	NCP	HVOL	2-Chlorotoluene	mg/kg	<0.5	5.1	70.8
7024585	NCP	HVOL	Bromochloromethane	mg/kg	<0.5	5.1	94.6

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated. Fater microbiological testing was commenced on the day received and within 24 hours of sampling unless otherwise stated.

M524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

M526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

 Page.
 rage 32 or 32

 Batch No:
 21-26926

Report Number: 898204
Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 2101228

					Sample Value	Expected Value	% Recovery
7024585	NCP	HVOL	Bromobenzene	mg/kg	<0.5	5.1	73.7
7024585	NCP	HVOL	Chloroform (Trichloromethane)	mg/kg	<0.5	5.1	90.0
7024585	NCP	HVOL	Chlorobenzene	mg/kg	<0.5	5.1	79.5
7024585	NCP	HVOL	Dibromomethane	mg/kg	<0.5	5.1	94.3
7024585	NCP	HVOL	1,2-Dibromoethane	mg/kg	<0.5	5.1	73.7
7024585	NCP	HVOL	Dichloromethane	mg/kg	<1	5.1	90.5
7024585	NCP	HVOL	Trichlorofluoromethane (CFC11)	mg/kg	<2	5.1	99.1
7024585	NCP	HVOL	Tetrachloroethene	mg/kg	<0.5	5.1	89.1
7024585	NCP	HVOL	Vinyl Chloride (Monomer)	mg/kg	<1	5.1	89.2
7024585	NCP	HVOL	1,1,1-Trichloroethane	mg/kg	<0.5	5.1	82.4
7024585	NCP	HVOL	1,1,2-Trichloroethane	mg/kg	<0.5	5.1	76.5
7024585	NCP	HVOL	Trichloroethene	mg/kg	<0.5	5.1	88.9

Samples not collected by ALS and are tested as received.

Samples are tested within holding time unless otherwise

Quality control

Final certificates

B	W	Bever	ridae	Willia	ms		Chain	of Cust	ody Forn	n		
200	H.			onment consu		J	ob number		2101228			
The state of		developine	iii & eiivii	onment const	illants		Laboratory	6 Montere	Eurofins Scientific terey Rd, Dandenong South VIC 3175			
Client			City of Port I	Phillip		Qı	ote number		180618BEV-3			
Project			Due Dillige	nce		Pro	ject Manager		A.Mellett			
Location		35;	1 St Kilda Road	, St Kilda		S	ampled by		S.Tomkinson/L.Stove	H		
Turnaroun	d time	24hr 🗖	48hr 🗖	72hr 🔲	Standar	rd 🗵	Comments:					
Chain of Cus	tody											
Fre	om	Con	npany	Date	Recei	ved by	Co	mpany	Date	Time		
S.Tom	kinson	Beverida	ge Williams	25/05/2021				,		Time		

Notes

Matrix: S = Soil GW = Groundwater W = Water R = Rinsate

Soluble Heavy Metals: Ag, As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V, Zn

Soil: Suite BW Soil 1: Metals, CPCP

Suite BW Soil 2: Metals, CrVI, Total CN, Total F, Speciated Phenols, BTEXN, Styrene, TRH, PAH, PCB, OCP, Volatile CHC, Semivolatile CHC, pH, Moisture

Water: Suite BW GW 1: Metals (As, Cd, Cu, Pb, Hg, Mo, Ni, Sn, Se, Ag, Zn), CrVI, Total CN, Speciated Phenols, BTEXN, Styrene, TRH, PAH (trace 0.00001), PCB, OCP (trace 0.00001mg/L), Volatile CHC, Semivolatile CHC, pH, TDS, Alkalinity, Sulphate, Chloride, Fluoride, Ca, Mg, K, Ca

All groundwater heavy metals testing must be for soluble metals unless otherwise Indicated.

Sample preservation Appropriate sample containers used, refrigerated or chilled samples supplied to laboratory

Re-testing of results as requested. Tests conducted and reported as per CoC form.

Sample holding times Tests conducted within specified holding times

Beve	eridge Williams					Job Nu	mber				210122	8	
					_			Testing req	uired				_
Sample ID	Date sampled	Matrix	No. of containers	Suite BW Soil 1: Metals [As, B, Ba, Be, Cd, Cr, Co, Cu, Pb, Hg, Mn, Mo, Ni, Sb, Sn, Se, Ag, V, Znj, OCP	Suite BW Soil 2: Metals (As, B, Ba, Be, Cd, Cr, Co, Pb, Hg, Mn, Mo, NI, Sb, Sn, Se, Ag, V, Zn), PAH	Suite BW Soil 3: Metals (As, B, Ba, Be, Cd, Cr, Co, Cu, Pb, Hgr, Min, Mo, NI, Sb, Sn, Se, Ag, V, Zn), PAH, OCP	Suite BW Soil 4 : Metals (As, B. Ba. Be, Cd, Cr, Co, Pb, Hg, Min, Ma, Ni, Sb, Sn, Se, Ag, V, Zn), PAH, TRH	Solite BW Soll S : Metals (As, B, Ba, Be, Cd, Cr, Co, Co, Up, Pb, Hg, Mrn, Mo, Mi, Sb, Stn, Se, Ag, V, Zh, CrV, Total CH, Total F, Spentiated Phenols, Britan, Styrens, TRH, PAH, CRB, COP, Volatile CHC, Semivolatile CHC, pH, Moisture	Suite B1: TRH, BTEXN	Suite 84: TRH, BTEXN, PAH	Sufte B7: TRH, BTEXN, PAH, Metals (As, Cd, Cr, Cu, NI, Pb, Zn, Hg)	State RC. VIC EPN WARS 52: - Tray PRH; Phenois, OCP, PCS, VOC, Vinyl Chloride, Metals (As, Cd, Cr, Cu, Ni, Pb, Hg, Ag, Sn, Mo, Sa. ZhM, Chi, J. CyM, Total Europied an	-
BH01/1.0-1.1A	25/05/2021	S	1	T O N	202	2 0 8	SON	OBROD	- vi	- G	W Q	2520	-
BH04/0.0-0.1A	25/05/2021	5	1		х								
				-					100	. /			
								797	197	6			-
								0	15	EF			
								90	for	171			
		-						20	1/1	11.			
							-		-				_
													_
						_	-						
							-						_

version: 1,0 Approved by: Manager Environment Reviewed: 15/01/2018

Page 1 of 1

Date: 06/04/2017 (ext Review: 31/01/2019

Initial

S.T

S.T

S.T

Certificate of Analysis

Environment Testing

Beveridge William & Co Pty Ltd PO Box 61 Malvern VIC 3144

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers records:

Attention: Andrew Mellett

Report 797926-S

Project name DUE DILLIGENCE

Project ID 2101228 Received Date May 26, 2021

Client Sample ID			BH04/0.0-0.1A
Sample Matrix			Soil
Eurofins Sample No.			M21-My49688
Date Sampled			May 25, 2021
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	0.8
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	1.1
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.4
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	0.6
Benzo(a)pyrene	0.5	mg/kg	0.7
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	0.6
Chrysene	0.5	mg/kg	1.0
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	1.3
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	1.4
Total PAH*	0.5	mg/kg	5.6
2-Fluorobiphenyl (surr.)	1	%	61
p-Terphenyl-d14 (surr.)	1	%	53
Heavy Metals	•		
Antimony	10	mg/kg	< 10
Arsenic	2	mg/kg	6.2
Barium	10	mg/kg	68
Beryllium	2	mg/kg	< 2
Boron	10	mg/kg	12
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	12
Cobalt	5	mg/kg	< 5
Copper	5	mg/kg	31
Lead	5	mg/kg	210
Manganese	5	mg/kg	110
Mercury	0.1	mg/kg	0.9

Eurofins Environment Testing 6 Monterey Road, Dandenong South, Victoria, Australia 3175 ABN : 50 005 085 521 Telephone: +61 3 8564 5000

Page 1 of 8 Report Number: 797926-S

Environment Testing

Client Sample ID Sample Matrix			BH04/0.0-0.1A Soil
Eurofins Sample No.			M21-My49688
Date Sampled			May 25, 2021
Test/Reference	LOR	Unit	
Heavy Metals			
Molybdenum	5	mg/kg	< 5
Nickel	5	mg/kg	14
Selenium	2	mg/kg	< 2
Silver	2	mg/kg	< 2
Tin	10	mg/kg	< 10
Vanadium	10	mg/kg	17
Zinc	5	mg/kg	310
% Moisture	1	%	8.8

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Melbourne	May 26, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Heavy Metals	Melbourne	May 26, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Melbourne	May 26, 2021	14 Days

⁻ Method: LTM-GEN-7080 Moisture

Address:

Environment Testing

ABN: 50 005 085 521 web: www.eurofins.com.au email: Enviro Sales@eurofins.com Site # 1254 & 14271

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA# 1261

Sydney Unit F3, Building F Lane Cove West NSW 2086 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA# 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 NATA # 1261 Site # 20794 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Received:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061 Rolleston, Christchurch 76 Phone: +64 9 526 45 51 IANZ # 1327

May 26, 2021 2:12 PM

Phone: 0800 856 450

IANZ # 1290

Company Name: Beveridge Williams & Co Pty Ltd PO Box 61

Malvem

VIC 3144

Project Name: DUE DILLIGENCE

Project ID: 2101228 Order No.:

797926 Report #: Phone: 9524 8888 Fax: 9524 8899

May 31, 2021 Due: Priority: 3 Day

Contact Name: Andrew Mellett

Eurofins Analytical Services Manager: Michael Morrison

Sample Detail					HOLD	Moisture Set	BW Soil Suite 2	
	ourne Laborato			71		Х	Х	Х
	ney Laboratory							
Brist	bane Laborator	y - NATA Site #	20794					
Perti	h Laboratory - N	IATA Site # 237	36					
Mayfield Laboratory - NATA Site # 25079								
Exte	rnal Laboratory							
No	Sample ID	Sample Date	Sampling Time	Matrix	LABID			
1	BH01/1.0-1.1A	May 25, 2021		Soil	M21-My49687	Х		
2 BH04/0.0-0.1A May 25, 2021 Soil M21-My49688							Х	Х
Test Counts					1	1	1	

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control

For VOCs containing viryl chloride, styrene and 2-chloroethyl viryl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.
**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: milligrams per litre

ppm: Parts per million ppb: Parts per billion %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 milli

Terms

CRM

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

 SPIKE
 Addition of the analyte to the sample and reported as percentage recovery.

 RPD
 Relative Percent Difference between two Duplicate pieces of analysis.

 LCS
 Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Certified Reference Material - reported as percent recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency
APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.

Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins Environment Testing 6 Monterey Road, Dandenong South, Victoria, Australia 3175 ABN : 50 005 085 521 Telephone: +61 3 8564 5000 Page 5 of 8

Report Number: 797926-S

Date Reported: May 31, 2021

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Antimony			mg/kg	< 10		2	10	Pass	
Arsenic			mg/kg	< 2			2	Pass	1
Barium			mg/kg	< 10			10	Pass	
Beryllium			mg/kg	< 2			2	Pass	
Boron			mg/kg	< 10			10	Pass	
Cadmium			mg/kg	< 0.4			0.4	Pass	
Chromium			mg/kg	< 5			5	Pass	
Cobalt			mg/kg	< 5			5	Pass	
Copper			mg/kg	< 5			5	Pass	
Lead			mg/kg	< 5			5	Pass	
Manganese			mg/kg	< 5			5	Pass	
Mercury			mg/kg	< 0.1			0.1	Pass	
Molybdenum			mg/kg	< 5			5	Pass	
Nickel			mg/kg	< 5			5	Pass	
Selenium			mg/kg	< 2			2	Pass	
Silver			mg/kg	< 2			2	Pass	
Tin			mg/kg	< 10			10	Pass	
Vanadium			mg/kg	< 10			10	Pass	
Zinc			mg/kg	< 5			5	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate			8			8			
Polycyclic Aromatic Hydrocarbo	ns			Result 1	Result 2	RPD			
Acenaphthene	M21-My43856	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M21-My43856	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M21-My43856	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M21-My43856	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M21-My43856	NCP	mg/kg						
5 415 11				< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M21-My43856	NCP		< 0.5 < 0.5	< 0.5 < 0.5	<1 <1	30% 30%	Pass Pass	
		NCP NCP	mg/kg						
Dibenz(a.h)anthracene	M21-My43856	NCP	mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1	30% 30%	Pass Pass	
			mg/kg mg/kg mg/kg	< 0.5	< 0.5	<1 <1	30%	Pass	
Dibenz(a.h)anthracene Fluoranthene Fluorene	M21-My43856 M21-My43856 M21-My43856	NCP NCP	mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	<1 <1 <1	30% 30% 30%	Pass Pass Pass	
Dibenz(a.h)anthracene Fluoranthene	M21-My43856 M21-My43856 M21-My43856 M21-My43856	NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Phenanthrene	M21-My43856 M21-My43856 M21-My43856	NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Phenanthrene Duplicate	M21-My43856 M21-My43856 M21-My43856 M21-My43856	NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Phenanthrene	M21-My43856 M21-My43856 M21-My43856 M21-My43856	NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Phenanthrene Duplicate Heavy Metals	M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My43856	NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Phenanthrene Duplicate Heavy Metals Antimony	M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My43856	NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Phenanthrene Duplicate Heavy Metals Antimony Arsenic Barium	M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My56075 M21-My56075 M21-My56075	NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 1.5 <	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Phenanthrene Duplicate Heavy Metals Antimony Arsenic Barium Beryllium	M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My56075 M21-My56075 M21-My56075 M21-My56075	NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 Result 1 < 10 10 39 < 2	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 Result 2 < 10 10 39 < 2	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Phenanthrene Duplicate Heavy Metals Antimony Arsenic Barium Beryllium Boron	M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My56075 M21-My56075 M21-My56075 M21-My56075 M21-My56075 M21-My56075	NCP	mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 Result 1 < 10 10 39 < 2 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 Result 2 < 10 10 39 < 2 < 10	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Phenanthrene Duplicate Heavy Metals Antimony Arsenic Barium Beryllium Boron Cadmium	M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My56075 M21-My56075 M21-My56075 M21-My56075 M21-My56075 M21-My56075	NCP	mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 Result 1 < 10 10 39 < 2 < 10 < 0.4	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Phenanthrene Duplicate Heavy Metals Antimony Arsenic Barium Beryllium Boron	M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My56075 M21-My56075 M21-My56075 M21-My56075 M21-My56075 M21-My56075 M21-My56075 M21-My56075	NCP	mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 Result 1 < 10 10 39 < 2 < 10 < 0.4 18	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 Result 2 < 10 10 39 < 2 < 10 < 0.4 17	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Phenanthrene Duplicate Heavy Metals Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt	M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My56075	NCP	mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 Result 1 < 10 10 39 < 2 < 10 < 0.4 18 6.4	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 Result 2 < 10 10 39 < 2 < 10 < 0.4 17 6.4	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Phenanthrene Duplicate Heavy Metals Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper	M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My56075	NCP	mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 Result 1 < 10 10 39 < 2 < 10 < 0.4 18 6.4 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 Result 2 < 10 10 39 < 2 < 10 < 0.4 17 6.4 < 5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Phenanthrene Duplicate Heavy Metals Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead	M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My56075	NCP	mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 Result 1 < 10 10 39 < 2 < 10 < 0.4 18 6.4 < 5 22	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Phenanthrene Duplicate Heavy Metals Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Manganese	M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My56075	NCP	mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 Result 1 10 39 < 2 < 10 < 0.4 18 6.4 < 5 22 360	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Phenanthrene Duplicate Heavy Metals Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead	M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My43856 M21-My56075	NCP	mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 Result 1 < 10 10 39 < 2 < 10 < 0.4 18 6.4 < 5 22	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	

Eurofins Environment Testing 6 Monterey Road, Dandenong South, Victoria, Australia 3175 ABN : 50 005 085 521 Telephone: +61 3 8564 5000

Page 6 of 8 Report Number: 797926-S

Duplicate								
Heavy Metals				Result 1	Result 2	RPD		
Selenium	M21-My56075	NCP	mg/kg	< 2	< 2	<1	30%	Pass
Silver	M21-My56075	NCP	mg/kg	< 2	< 2	<1	30%	Pass
Tin	M21-My56075	NCP	mg/kg	< 10	< 10	<1	30%	Pass
Vanadium	M21-My56075	NCP	mg/kg	38	37	2.0	30%	Pass
Zinc	M21-My56075	NCP	mg/kg	20	19	1.0	30%	Pass
Duplicate	8 32			22				
				Result 1	Result 2	RPD		
% Moisture	M21-My49901	NCP	%	12	11	7.0	30%	Pass

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

Please note: These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised by:

Michael Morrison Analytical Services Manager
Emily Rosenberg Senior Analyst-Metal (VIC)
Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless induced otherwise, the tests were performed on the samples as received.