Energy Efficient Fresh Air Ventilation & Airtight Building Envelope

Challenge: The number of potential places that air leakage can occur increases with the scale and complexity of building projects. When warm or cool air escapes from the building envelope it decreases the efficiency of heating and cooling systems, which must use more power to maintain internal comfort. Internal air quality may also be adversely affected by air leakage from outside the building envelope.

Solution: Adopt rigorous building practices relating to air tightness in combination with energy efficient, fresh air ventilation solutions that maintain the integrity of the building envelope.

Benefits: An airtight building accompanied by efficient fresh air ventilation, potentially allows engineers to specify heating and cooling solutions with lower capacities, thereby reducing costs.

Benchmark: Specify energy efficient heat recovery ventilation systems and commit to a blower door test post construction to achieve the following:
- Dwelling 3.0 ACH/Per Hour @ 50Pa
- Office 2.0 ACH/Per Hour @ 50Pa
- Retail 1.5 ACH/Per Hour @ 50Pa
- Industrial 3.5 ACH/Per Hour @ 50Pa

Reference: Green Star Design & As Built - Green House Gas Emissions Section 15A and Guidance

Further References
- Built Environment Sustainability Scorecard (BESS)
 www.bess.net.au/
- Green Building Council Australia - Green Star Rating Tool
 www.gbca.org.au/
- Living Building Challenge
 living-future.org.au
- Fishermans Bend Urban Renewal Area
- National Construction Code
- World Building Design Guide
 www.wbdg.org/
- Wood Solutions Technical Design Guides
- Growing Green Guide
 www.growinggreenguide.org/
- St Kilda Indigenous Nursery Co-operative
 www.skinc.com.au

Life Cycle Assessment (LCA)

Challenge: Design principles and building practices that minimise environmental impact are being employed as knowledge and standards improve, however, once a project is realised and becomes operational, the true impact of large scale developments is rarely understood.

Solution: LCAs that employ Whole-of-building, whole-of-life methodology should be undertaken to work out the overall environmental impact of developments. Once assessed, various strategies to lower embodied energy such as selection of materials with recycled content or prefabrication can be considered effectively.

Benefits: A lifecycle measure of reduced environmental impacts will elevate developments in the eyes of planning authorities, while attracting interest from the increasing environmentally-conscious markets. With information gained from whole-of-life analysis, design and cost decisions on energy efficiency can be made effectively.

Benchmark: Conduct a whole-of-building, whole-of-life (cradle-to-grave) LCA for the proposed design compared with a reference building. Achieve a Cumulative Impact Reduction up to 70% for 1 point (90% for 2 points).

Reference: Green Star Design & As Built - Section 19A Life Cycle Assessment

Innovative Sustainable Design for Large-Scale Developments

The design and construction of large scale developments provides specific opportunities for Environmentally Sustainable Design (ESD), particularly where urban renewal is implicit in the design brief. Environmental outcomes contribute not only to the connectivity and liveability of spaces but also to the overall success of developments from the perspective of economic return and market prestige.

ESD Policy - Clause 22.13 for 2 dwellings or more. The overarching objective is that development should achieve best practice in environmentally sustainable development from the design stage through to construction and operation.

The Built Environment Sustainability Scorecard (BESS) has been developed to demonstrate compliance with the ESD policy. BESS has 9 environmental categories to holistically assess sustainable design at the planning stage. One of these categories is Innovation which allows users to self nominate initiatives which they think may obtain points within the tool. This document provides defined credits for the Innovation category that relate to large scale development and compliment the sustainability principles for Fishermans Bend Urban Renewal Area (FBURA).

Council will award the indicated points in the Innovation category for each of these credits provided that the evidence has been provided as part of the Sustainable Management Plan submitted when lodging for a planning permit. Up to ten points may be obtained by meeting benchmarks for multiple innovative initiatives. Each single initiative can be awarded one or two points. The points achievable for the initiatives discussed in this fact sheet are indicated by 1 point or 2 point symbols.

This document is aligned with the Sustainability Principles for Fishermans Bend endorsed by Council in December 2015. The 6 principles outlined promote building and precinct development that is sustainable at all stages of its lifecycle. All innovative design initiatives are in alignment with 2 or more of these principles:

A LOW CARBON CITY
Greenspace emissions will be minimised through energy efficiency and use of clean and renewable energy generation.

A WATER SENSITIVE CITY
Porous water will be minimised through water efficient buildings, open space and infrastructure; use of rainwater, stormwater and recycled water. Water sensitive urban design will play a key role in water management.

A CLIMATE ADEPT CITY
Built form, infrastructure, and vegetation will be used in ways to create a more favourable local climate, whilst ‘absorbing’ the impacts of extreme weather events during the asset life (at least 100 years).

A CONNECTED AND LIVEABLE CITY
Residents, visitors and workers can live and travel car free by improving the convenience, safety, accessibility and range of sustainable travel choices.

A LOW WASTE CITY
Mineral waste during construction and operations, by applying the principles of the waste hierarchy. Demolition and refurbishment waste will be minimised through adaptive reuse. Maximum value will be extracted from the waste stream and waste to landfill minimised.

A BIODIVERSE CITY
Urban development, built form and open spaces that create habitat opportunities for indigenous flora and fauna.

This may include the use of green roofs and walls, streets trees and planting in open spaces to maximise habitat and preservation of local species.

Note: The benchmarks for innovation within this document have been selected from the most relevant industry tools. Initiatives that meet equivalent or higher standards will be considered by Council on a case by case basis.
Daylight Access

Challenge: Increased density in the built environment of our city can lead to reduced access of living and working spaces to daylight. Exposure to daylight is well recognised as important to physical & mental wellbeing.

Solution: Headers design professionally assessed and verified as allowing a high level of daylight to habitable areas.

Benefits: The market values spaces with abundant natural light.

Construction Waste Reduction

Challenge: Construction contributes to a third of all waste going to landfill in Australia.

Solution: Reduce the amount of waste that becomes landfill during construction by designing for standard material sizes, through prefabrication of building components and by sorting waste on site so that the majority is recycled.

Benefits: A clear, controlled construction site is safer for workers and more conducive and efficient an build.

Benchmark: Provide a construction waste management plan that commits to diverting at least 90% of construction and demolition waste from landfill.

Reference: BESS Waste - Section 1.0 Construction Waste Management

Urban Agriculture

Challenge: Transport of produce into urban supermarkets from farms hundreds of kilometres beyond the city creates significant issues, including carbon dioxide pollution and traffic within urban areas.

Solution: Design green roofs, balconies and communal spaces that allow market or community gardens.

Benefits: The produce from these gardens can be sold to local outlets or purchased directly from the source by local communities, representing a potential source of revenue for developers.

Benchmark: Dedicate a minimum of 0.50m² of site area per resident / occupant to food production.

Reference: BESS Urban Ecology - Section J.1.13 Food Production

Building thermal performance

Challenge: Creating high density buildings that provide a high level of thermal comfort and have a low energy footprint.

Solution: Improve thermal fabric quality beyond the National Construction Code (NCC) requirements for non-residential areas.

Benefits: To the market, energy efficiency can be communicated as savings on ongoing bills.

Benchmark: A 7.5 J/5m²/year NABERS star average for apartments and a 20% improvement on Section J DTS standards using J3V modelling for non-residential areas.

Urban Ecology for Biodiversity

Challenge: The massive physical form of high density developments traditionally limits opportunities for urban ecology and biodiversity.

Solution: Enhance biodiversity by integrating the strategic use of plant in landscaped areas and through the use of green roofs, walls and balconies.

Benefits: Urban ecology absorbs carbon dioxide, breaks up large, potentiallychoking physical forms and is correlated with a number of health benefits derived from reduced stress. A reduction in the UHI effect helps to improve outdoor urban spaces and reduce cooling demands internally.

Reference: Green Star Design & As Built - Section 25 Heat Island Effect Reduction

Integrated External Shading

Challenge: Large buildings present expansive areas of glazing to the hot summer sun, potentially decreasing user comfort and increasing energy costs associated with cooling.

Solution: Use fixed and adjustable shading to reduce sun penetration into internal spaces.

Benefits: Aesthetically integrated shading enhances the visual appeal of the development. Additionally, the reduced operating costs of passively cooled buildings are appealing to an energy conscious market.

Reference: BESS Indoor Environment Quality - Section 3.2 Thermal Comfort - External Shading

Sharing of Infrastructure

Challenge: Space for accommodation and community areas within new developments is constrained by the necessity for waste removal, water and energy supply and associated infrastructure.

Solution: Share waste removal and services infrastructure with existing and concurrent developments. methods make multi-storey timber buildings a viable alternative.

Benefits: Structural timber reduces overall building loads and is less labour intensive when compared with concrete and steel, representing significant cost savings. Building with timber reduces carbon emissions.

Benchmark: Use timber for 70% of the above ground structure.

Structural Timber Construction

Challenge: Typical construction methods for multi-storey buildings involve high volumes of heavy concrete and steel, which are costly to transport and manipulate.

Solution: Timber is light-weight in comparison to steel and concrete. Integrating and concurrent developments, methods make multi-storey timber buildings a viable alternative.

Benefits: Structural timber reduces overall building loads and is less labour intensive when compared with concrete and steel, representing significant cost savings. Building with timber reduces carbon emissions.

Benchmark: Use timber for 70% of the above ground structure.

Third-Pipe Ready

Challenge: Potable water is a precious commodity. Enabling homes and businesses to use less is essential to the continued viability of our water catchments.

Solution: In addition to the installation of water saving faucets, new developments should incorporate plumbing systems with a “third pipe” that pipes non-potable water to all non-potable areas, for example toilet flushing.

Benefits: Third-pipe infrastructure enables reduced on-going water use, reduces water costs and helps to “future-proof” the development against water shortages.

Benchmark: Install third-pipe infrastructure for non-potable water uses: -Toilet flushing - Irrigation - Fire services - Bin and balcony washing

Reference: Fishermans Bend Strategic Framework Plan 2015 - Objective 7.2 Guideline I

Building-Integrated Photovoltaics (BIPV)

Challenge: The roof space of large scale developments is valuable with communal gardens or the efficient location of plant and services competing for priority. This constrains the space available for conventional photovoltaic (PV) panels.

Solution: Integrate BIPV products into components of the building envelope such as roofing, skylights and wall cladding.

Benefits: Renewable energy can be generated without sacrificing an efficient and appealing external aesthetic.

Benchmark: Design and Install BIPV systems that contribute to at least a 10% reduction (15% reduction for 2 points) of on-site greenhouse gas emissions.